Home
Class 8
MATHS
overline(ab) + overline(ba) is completel...

`overline(ab) + overline(ba)` is completely divisible by 11 and the quotient is `a + b`.

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

[[overline(a), overline(b), overline(a)timesoverline(b)]]=

If overline(a), overline(b), overline(c) are non-coplanar vectors and the points with position vectors 2overline(a)+2overline(b), overline(a)+lambdaoverline(b)+overline(c) and 4overline(a)+4overline(b)-5overline(c) are coplanar, then lambda=

For vectors overline(a) and overline(b) and overline(a)+overline(b)ne=0 and overline(c) is a non-zero vector, then (overline(a)+overline(b))times(overline(c)-(overline(a)+overline(b)))=

If overline(a) and overline(b) are position verctors of A and B respectively, then the position vector of point C in produced AB such that overline(AC)=3overline(AB) is

If overline(c)=2overline(a)+5overline(b), |overline(a)|=a, |overline(b)|=b and the angle between overline(a) and overline(b) is (pi)/(3) , then c^(2) =

If |overline(c)|=1 and overline(c) is perpedicular to overline(a) and overline(b) such that the angle between overline(a) and overline(b) is (pi)/(4) , then [[overline(a), overline(b), overline(c)]]=

If overline(a) and overline(b) are the position vectors of the points (1, -1), (-2, m) and overline(a), overline(b) are collinear, then m=