Home
Class 8
MATHS
overline(ab) - overline(ba) is exactly d...

`overline(ab) - overline(ba)` is exactly divisible by 9

Promotional Banner

Similar Questions

Explore conceptually related problems

[[overline(a), overline(b), overline(c)]] is the scalar triple product of three vectors overline(a), overline(b), overline(c) then [[overline(a), overline(b), overline(c)]]=

If |overline(c)|=1 and overline(c) is perpedicular to overline(a) and overline(b) such that the angle between overline(a) and overline(b) is (pi)/(4) , then [[overline(a), overline(b), overline(c)]]=

If overline(c)=5overline(a)-4overline(b) and overline(a) is perpendicular to overline(b) , then c^(2)=

If overline(a) and overline(b) represent the sides overline(AB) and overline(BC) of a regular hexagon ABCDEF, then overline(FA)=

If overline(a) and overline(b) are position verctors of A and B respectively, then the position vector of point C in produced AB such that overline(AC)=3overline(AB) is

overline(a), overline(b) are vectors, overline(AB), overline(BC) determined by two adjacent sides of a regular hexagon ABCDEF.The vector represented by overline(EF) is

If overline(a), overline(b), overline(c) are linearly independent, the ([[2overline(a)+overline(b), 2overline(b)+overline(c), 2overline(c)+overline(a)]])/([[overline(a), overline(b), overline(c)]])=

The volume of paralleloP1ped with vector overline(a)+2overline(b)+overline(c), overline(a)-overline(b) and overline(a)-overline(b)-overline(c) is equal to k[[overline(a), overline(b), overline(c)]] . Then k=

For vectors overline(a) and overline(b) and overline(a)+overline(b)ne=0 and overline(c) is a non-zero vector, then (overline(a)+overline(b))times(overline(c)-(overline(a)+overline(b)))=

[[overline(a), overline(b), overline(a)timesoverline(b)]]=