Home
Class 8
MATHS
The sum overline(abc) + overline(bca) + ...

The sum `overline(abc) + overline(bca) + overline(cab)` is exactly divisible by `37(a + b + c)`.

Promotional Banner

Similar Questions

Explore conceptually related problems

[[overline(a), overline(b), overline(a)timesoverline(b)]]=

[[overline(a), overline(b)+overline(c), overline(c)+overline(b)+overline(a)]]=

If overline(c)=5overline(a)-4overline(b) and overline(a) is perpendicular to overline(b) , then c^(2)=

In the Boolean algebra : overline(A).overline(B) = ….

[[overline(a)-overline(b), overline(b)-overline(c), overline(c)-overline(a)]]=

[[overline(a)+overline(b), overline(b)+overline(c), overline(c)+overline(a)]]=

The volume of paralleloP1ped with vector overline(a)+2overline(b)+overline(c), overline(a)-overline(b) and overline(a)-overline(b)-overline(c) is equal to k[[overline(a), overline(b), overline(c)]] . Then k=

For non-zero vectors overline(a), overline(b), overline(c), (overline(a)timesoverline(b))*overline(c)=|overline(a)||overline(b)||overline(c)| holds, iff

If overline(a), overline(b) and overline(c) are unit vectors perpendicular to each other, the [[overline(a), overline(b), overline(c)]]^(2)=

If A =B=C=1 and X= overline(ABC)+B overline(BC) + C overline(AB) , then X=