Home
Class 11
MATHS
किसी समांतर श्रेणी में यदि S(n ) =n^(2 )...

किसी समांतर श्रेणी में यदि `S_(n ) =n^(2 )P ` तथा `S_(m) =m^(2)P ,` जहाँ `m ne n`, तो सिद्ध कीजिए `S_(p)=P^(3).`

Promotional Banner

Similar Questions

Explore conceptually related problems

If S_(m)=m^(2) p and S_(n)=n^(2)p , where m ne n in an AP then prove that S_(p) =P^(3)

If in an A.P.S_(n)=n^(2)p and S_(m)=m^(2)p, then S_(p) is equal to

If in an A.P, S_n=n^2p and S_m=m^2p , then S_p is equal to

For as Ap. S_(n)= m and S_(m) = n . Prove that S_(m+n)=-(m+n).(m ne n)

If in an A.P. S_(n) = qn^(2) and S_(m) = qm^(2) , where S_(r ) denotes the sum of r terms of the A.P. , then S_(q) equals :

If n(P) = n(M), then P → M.

If in an A.P.S_(n)=n^(2)q and S_(m)=m^(2)q, where S_(r) denotes the sum of r terms of the A.P.then S_(q) equals (q^(3))/(2) b.mnq c.q^(3) d.(m^(2)+n^(2))q

If P(m+n, 2) = 56 and P(m-n, 2) = 12 then the values of m and n are