Home
Class 12
MATHS
If I=int-1^1 ([x^2]+log((2+x)/(2-x)))dx...

If `I=int_-1^1 ([x^2]+log((2+x)/(2-x)))dx` where denotes the greatest integer `leq x`, then `I` equals

Promotional Banner

Similar Questions

Explore conceptually related problems

I=int_-1^1([x^2]+log((2+x)/(2-x))dx....(1) where [x] denotes the greatest integer lex then I equals

If I=int_(-1)^(1) {[x^(2)]+log((2+x)/(2-x))}dx where [x] denotes the greatest integer less than or equal to x, the I equals

Consider the integral I=int_(0)^(10)([x]e^([x]))/(e^(x-1))dx , where [x] denotes the greatest integer less than or equal to x. Then the value of I is equal to :

int_(0)^(15/2)[x-1]dx= where [x] denotes the greatest integer less than or equal to x

int_(0)^([x]//3) (8^(x))/(2^([3x]))dx where [.] denotes the greatest integer function, is equal to

int_(0)^([x]//3) (8^(x))/(2^([3x]))dx where [.] denotes the greatest integer function, is equal to

int_(-1)^(1)[x^(2)-x+1]dx, where [.] denotes thegreatest integer function,is equal to

I=int_(-1)^(1)log((2-x)/(2+x))dx

int_(-1)^(41//2)e^(2x-[2x])dx , where [*] denotes the greatest integer function.