Home
Class 10
MATHS
If x^2 + y^2=6xy prove that 2log(x+y) =...

If `x^2 + y^2=6xy` prove that `2log(x+y) = logx+ logy + 3log2`

Text Solution

Verified by Experts

`x^2+y^2 = 6xy`
`=>(x+y)^2-2xy = 6xy`
`=>(x+y)^2 = 8xy`
Taking log both sides,
`log(x+y)^2 = log(8xy)`
`=>2log(x+y) = log8+logx+logy`
`=>2log(x+y) = log2^3+logx+logy`
`=>2log(x+y) = 3log2+logx+logy`
Promotional Banner

Similar Questions

Explore conceptually related problems

If x^2 + y^2 = 6xy , prove that 2 log (x + y) = logx + logy + 3 log 2

If x^2 + y^2 = 6xy , prove that 2 log (x + y) = logx + logy + 3 log 2

If x^2 + y^2 = 6xy , prove that 2 log (x + y) = logx + logy + 3 log 2

If x^2 + y^2 = 6xy , prove that 2 log (x + y) = logx + logy + 3 log 2

If x^2 + y^2 = 6xy , prove that 2 log (x + y) = logx + logy + 3 log 2

If x^(2) + y^(2)=6xy , prove that 2 log (x+ y)= log x + log y + 3 log 2

If x^2 + y^2 = 10xy , prove that 2 log (x + y) = log x + log y + 2 log 2 + log 3 .

If x^(2)+y^(2) = 6xy , then prove that 2log(x+y) = log x + logy + 3log2 .

If x^2+y^2=25xy. then prove that 2log(x+y)=3log3+logx+logy.

if x^(2) + y^(2)= 25xy , then prove that 2 log(x + y) = 3log3 + logx + logy.