Home
Class 12
MATHS
Prove the following : e^(-(1)/(e)) lt in...

Prove the following : `e^(-(1)/(e)) lt int_(0)^(1)x^(x)dx lt 1`

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(1)x e^(x)dx=

Prove the following : 1 lt int_(0)^(pi//2)sqrt(sinx)dx lt sqrt(pi/2)

int_(0)^(1)(1+e^(-x))dx=

Prove the following : int_(0)^(1)e^(-x)cos^(2)xdx lt int_(0)^(1)e^(-x^(2))cos^(2)xdx

Prove the following : int_(0)^(1)e^(-x)cos^(2)xdx lt int_(0)^(1)e^(-x^(2))cos^(2)xdx

Prove the following: -1/2lt=int_0^1(x^3cosx)/(2+x^2)dx<1/2

Prove that following: int_(-1)^(1)e^(|x|) dx

int_(0)^(1)e^(2x)e^(e^(x) dx

Prove the following: int_0^1 x e^x dx = 1