Home
Class 12
MATHS
[[2,3],[5,7]]...

[[2,3],[5,7]]

Promotional Banner

Similar Questions

Explore conceptually related problems

[(1,2,3),(2,5,7),(-2,-4,-5)] is the inverse of

Prove that the points '(1,3),(2,5)' '(3,7)' are on the same line.

(2/3)^(-5)x\ (5/7)^(-5) is equal to (2/3x5/7)^(-10) (b) (2/3x5/7)^(-5) (c) (2/3x5/7)^(25) (d) (2/3x5/7)^(-25)

(2/3)^(-5)x\ (5/7)^(-5) is equal to (a) (2/3x5/7)^(-10) (b) (2/3x5/7)^(-5) (c) (2/3x5/7)^(25) (d) (2/3x5/7)^(-25)

Let p and q stand for the statements 2+3=5 & 3+7=8 respectively. Then 2+3!=5&3+7=8 stands for

Find the sum 1 2/7+3/7+2 5/7

x=(2*5)/((2!)3)+(2*5*7)/((3!)3^(2))+(2*5*7*9)/((4!)3^(3))+..... then x^(2)+8x+8=

[((2)/(7))^(3)]^(5)=((2)/(7))^(8)

Show that 2(1/(3!)+2/(5!)+3/(7!)+...)=1/e

Sum of divisors of 2^(5).3^(7).5^(3).7^(2) is :