Home
Class 12
MATHS
f(x)=x^(3) and f(-x)=(-x)^(3)=-x^(3)....

`f(x)=x^(3) and f(-x)=(-x)^(3)=-x^(3)`.

Text Solution

AI Generated Solution

To determine the type of function represented by \( f(x) = x^3 \), we will analyze the function using the given information about \( f(-x) \). ### Step-by-Step Solution: 1. **Identify the function and its negative input:** We start with the function: \[ f(x) = x^3 ...
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    ENGLISH SAT|Exercise EXERCISES|18 Videos
  • EXPONENTIAL AND LOGARITHMIC FUNCTIONS

    ENGLISH SAT|Exercise Exercises|10 Videos
  • GETTING STARTED

    ENGLISH SAT|Exercise MCQs|8 Videos

Similar Questions

Explore conceptually related problems

f(x) = |x|/x. Find f(-3)

Find the points of inflection for f(x)=sinx f(x)=3x^4-4x^3 f(x)=x^(1/3)

Let f (x) =x ^(3)-3x Find f (f (x))

If f(x) = root(3)(x) and g(x) = x^(3) + 8 , find (f @ g) (3) .

For xgt3,f(x)=3x-2 and for -2lexle2,f(x)=x^(2)-2 , find f(0)+f(4)

If f(x)=3x^2, then f'(2)=

If function f satisfies the relation f(x)*f^(prime)(-x)=f(-x)*f^(prime)(x) for all x ,and f(0)=3, and if f(3)=3, then the value of f(-3) is ______________

The function f(x)=x^(3)-3x is

If f (x )= (x-1) ^(4) (x-2) ^(3) (x-3) ^(2) then the value of f '(1) +f''(2) +f''(3) is:

"If "f(x)=(x-1)^(4)(x-2)^(3)(x-3)^(2)(x-4), then the value of f'''(1)+f''(2)+f'(3)+f'(4) equals