Home
Class 12
MATHS
If f(x)=3x^(2)-2x+4,f(-2)=...

If `f(x)=3x^(2)-2x+4,f(-2)=`

A

`-12`

B

`-4`

C

`-2`

D

20

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( f(-2) \) for the function \( f(x) = 3x^2 - 2x + 4 \), we will follow these steps: ### Step 1: Substitute \( x = -2 \) into the function We start by substituting \(-2\) for \(x\) in the function \(f(x)\). \[ f(-2) = 3(-2)^2 - 2(-2) + 4 \] ### Step 2: Calculate \((-2)^2\) Next, we calculate \((-2)^2\): \[ (-2)^2 = 4 \] ### Step 3: Multiply by 3 Now, we multiply the result by 3: \[ 3 \times 4 = 12 \] ### Step 4: Calculate \(-2 \times -2\) Now, we calculate \(-2 \times -2\): \[ -2 \times -2 = 4 \] ### Step 5: Combine all parts Now we can combine all the parts together: \[ f(-2) = 12 + 4 + 4 \] ### Step 6: Add the values Finally, we add these values together: \[ 12 + 4 + 4 = 20 \] Thus, the value of \( f(-2) \) is \[ \boxed{20} \] ---

To find the value of \( f(-2) \) for the function \( f(x) = 3x^2 - 2x + 4 \), we will follow these steps: ### Step 1: Substitute \( x = -2 \) into the function We start by substituting \(-2\) for \(x\) in the function \(f(x)\). \[ f(-2) = 3(-2)^2 - 2(-2) + 4 \] ...
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    ENGLISH SAT|Exercise EXERCISES|18 Videos
  • EXPONENTIAL AND LOGARITHMIC FUNCTIONS

    ENGLISH SAT|Exercise Exercises|10 Videos
  • GETTING STARTED

    ENGLISH SAT|Exercise MCQs|8 Videos

Similar Questions

Explore conceptually related problems

If f (x) =3x ^(9) -2x ^(4) +2x ^(3)-3x ^(2) +x+ cosx +5 and g (x) =f ^(-1) (x), then the value of g'(6) equals:

If f(x)=3x^(3)-2x^(2)+x-2 , and i =sqrt(-1) then f(i) =

If f(x)=3x^2, then f'(2)=

If f (x) = (x ^(2) - 3x +4)/(x ^(2)+ 3x +4), then complete solution of 0lt f (x) lt 1, is :

If f(x+2)=(x+3)^(2)-2x , then f(x)=

If f(x)=3x^(4)+4x^(3)-12x^(2)+12 , then f(x) is

For xgt3,f(x)=3x-2 and for -2lexle2,f(x)=x^(2)-2 , find f(0)+f(4)

If f(x)=2x^(6)+3x^(4)+4x^(2) , then f'(x) is

If f(x) =x^4 + 3x ^2 - 6x -2 then the coefficient of x^3 in f(x +1) is

If f (x )= (x-1) ^(4) (x-2) ^(3) (x-3) ^(2) then the value of f '(1) +f''(2) +f''(3) is: