Home
Class 12
MATHS
The exact value of "cos"(3pi)/(4) is...

The exact value of `"cos"(3pi)/(4)` is

A

`-1`

B

`-(sqrt(3))/(2)`

C

`-(sqrt(2))/(2)`

D

`-(1)/(2)`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the exact value of \( \cos\left(\frac{3\pi}{4}\right) \), we can follow these steps: ### Step 1: Rewrite the angle We can express \( \frac{3\pi}{4} \) in a different form: \[ \frac{3\pi}{4} = \pi - \frac{\pi}{4} \] ### Step 2: Use the cosine subtraction identity Using the identity \( \cos(\pi - \theta) = -\cos(\theta) \), we can rewrite the cosine: \[ \cos\left(\frac{3\pi}{4}\right) = \cos\left(\pi - \frac{\pi}{4}\right) = -\cos\left(\frac{\pi}{4}\right) \] ### Step 3: Find \( \cos\left(\frac{\pi}{4}\right) \) We know that: \[ \cos\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}} \] ### Step 4: Substitute back into the equation Now substitute \( \cos\left(\frac{\pi}{4}\right) \) back into the equation: \[ \cos\left(\frac{3\pi}{4}\right) = -\frac{1}{\sqrt{2}} \] ### Step 5: Rationalize the denominator To express this in a more standard form, we can rationalize the denominator: \[ -\frac{1}{\sqrt{2}} = -\frac{1}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}} = -\frac{\sqrt{2}}{2} \] ### Final Answer Thus, the exact value of \( \cos\left(\frac{3\pi}{4}\right) \) is: \[ -\frac{\sqrt{2}}{2} \] ---

To find the exact value of \( \cos\left(\frac{3\pi}{4}\right) \), we can follow these steps: ### Step 1: Rewrite the angle We can express \( \frac{3\pi}{4} \) in a different form: \[ \frac{3\pi}{4} = \pi - \frac{\pi}{4} \] ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIANGLE TRIGONOMETRY

    ENGLISH SAT|Exercise EXERCISES|13 Videos
  • TRANSFORMATION AND SYMMETRY

    ENGLISH SAT|Exercise EXERCISES|4 Videos
  • TRIGONOMETRIC FUNCTIONS

    ENGLISH SAT|Exercise MCQs (Exercise)|30 Videos

Similar Questions

Explore conceptually related problems

The exact value of cos((2pi)/28)cosec((3pi)/28)+cos((6pi)/28)cosec((9pi)/28)+cos((18pi)/28)cosec((27pi)/28)

If sin(pi cos theta) = cos(pi sin theta) , then the value of cos(theta+- pi/4) is

Knowledge Check

  • The value of "cos"((3pi)/2+x)."cos"(2pi+x)["cot"((3pi)/(2)-x)+"cot"(2pi+x)] is

    A
    -1
    B
    0
    C
    1
    D
    2
  • The value of "cos"(2pi)/(15)."cos"(4pi)/(15)."cos"(8pi)/(15)."cos"(16pi)/(15) is

    A
    (a)`-1/(16)`
    B
    (b)`-1/(8)`
    C
    (c) `1/(8)`
    D
    (d)`1/(16)`
  • Similar Questions

    Explore conceptually related problems

    The value of cos^(-1)(cos'(3pi)/(2)) is

    The value of sin^(-1)(cos(33pi)/5) is (a) (3pi)/5 (b) -pi/(10) (c) pi/(10) (d) (7pi)/5

    The value of cos""(pi)/(11)+cos""(3pi)/(11)+cos""(5pi)/(11)+cos""(7pi)/(11)+cos""(9pi)/(11), is

    The value of cos""(pi)/(9)cos""(2pi)/(9)cos""(3pi)/(9), is

    The value of sin^(-1)(cos((33pi)/5)) is (a) (3pi)/5 (b) -pi/(10) (c) pi/(10) (d) (7pi)/5

    Write the value of cos^(-1)(tan((3pi)/4)) .