Home
Class 12
MATHS
The area off triangleABC=12sqrt(3), side...

The area off `triangleABC=12sqrt(3)`, side `a=6,` and side `b=9` side c=

A

`2sqrt(37)`

B

`2sqrt(13)`

C

`2sqrt(37)` or `2sqrt(13)`

D

10

Text Solution

AI Generated Solution

The correct Answer is:
To find the side \( c \) of triangle \( ABC \) given the area \( 12\sqrt{3} \), side \( a = 6 \), and side \( b = 9 \), we can use Heron's formula. ### Step-by-Step Solution: 1. **Calculate the semi-perimeter \( s \)**: \[ s = \frac{a + b + c}{2} = \frac{6 + 9 + c}{2} = \frac{15 + c}{2} \] 2. **Apply Heron's formula**: The area \( A \) of the triangle can be expressed using Heron's formula: \[ A = \sqrt{s(s-a)(s-b)(s-c)} \] Given that \( A = 12\sqrt{3} \), we can substitute the values: \[ 12\sqrt{3} = \sqrt{s(s-a)(s-b)(s-c)} \] 3. **Substituting the values of \( s-a \), \( s-b \), and \( s-c \)**: \[ s - a = \frac{15 + c}{2} - 6 = \frac{3 + c}{2} \] \[ s - b = \frac{15 + c}{2} - 9 = \frac{-3 + c}{2} \] \[ s - c = \frac{15 + c}{2} - c = \frac{15 - c}{2} \] 4. **Substituting into Heron's formula**: \[ 12\sqrt{3} = \sqrt{\left(\frac{15 + c}{2}\right) \left(\frac{3 + c}{2}\right) \left(\frac{-3 + c}{2}\right) \left(\frac{15 - c}{2}\right)} \] 5. **Squaring both sides**: \[ (12\sqrt{3})^2 = \left(\frac{15 + c}{2}\right) \left(\frac{3 + c}{2}\right) \left(\frac{-3 + c}{2}\right) \left(\frac{15 - c}{2}\right) \] \[ 432 = \frac{(15+c)(3+c)(-3+c)(15-c)}{16} \] 6. **Multiply both sides by 16**: \[ 6912 = (15+c)(3+c)(-3+c)(15-c) \] 7. **Expanding the right-hand side**: \[ (15+c)(15-c) = 225 - c^2 \] \[ (3+c)(-3+c) = c^2 - 9 \] Thus, \[ 6912 = (225 - c^2)(c^2 - 9) \] 8. **Expanding the equation**: \[ 6912 = 225c^2 - 2025 - c^4 + 9c^2 \] \[ 0 = c^4 - 234c^2 + 8837 \] 9. **Letting \( y = c^2 \)**: \[ y^2 - 234y + 8837 = 0 \] 10. **Using the quadratic formula**: \[ y = \frac{234 \pm \sqrt{234^2 - 4 \cdot 1 \cdot 8837}}{2 \cdot 1} \] \[ y = \frac{234 \pm \sqrt{54756 - 35348}}{2} \] \[ y = \frac{234 \pm \sqrt{19408}}{2} \] 11. **Calculating the square root**: \[ y = \frac{234 \pm 139.43}{2} \] Thus, \[ y_1 = \frac{373.43}{2} \approx 186.715 \quad \text{and} \quad y_2 = \frac{94.57}{2} \approx 47.285 \] 12. **Finding \( c \)**: \[ c = \sqrt{y_1} \quad \text{or} \quad c = \sqrt{y_2} \] We take the positive values: \[ c \approx \sqrt{186.715} \quad \text{or} \quad c \approx \sqrt{47.285} \] ### Final Values: - \( c \approx 13.65 \) or \( c \approx 6.87 \)

To find the side \( c \) of triangle \( ABC \) given the area \( 12\sqrt{3} \), side \( a = 6 \), and side \( b = 9 \), we can use Heron's formula. ### Step-by-Step Solution: 1. **Calculate the semi-perimeter \( s \)**: \[ s = \frac{a + b + c}{2} = \frac{6 + 9 + c}{2} = \frac{15 + c}{2} \] ...
Promotional Banner

Topper's Solved these Questions

  • TRIANGLE TRIGONOMETRY

    ENGLISH SAT|Exercise EXERCISES|13 Videos
  • TRANSFORMATION AND SYMMETRY

    ENGLISH SAT|Exercise EXERCISES|4 Videos
  • TRIGONOMETRIC FUNCTIONS

    ENGLISH SAT|Exercise MCQs (Exercise)|30 Videos

Similar Questions

Explore conceptually related problems

The area of triangleABC,=24sqrt(3) , side a=6, annd side b=16. the value of angleC is

Find the area of a triangle ABC whose sides are 9m ,12 m a n d15 m respectively.

Find the area of a triangle whose perimeter is 22 cm, one side is 9 cm and the difference of other two sides is 3 cm.

The area of the triangle whose sides. are 5 cm, 13 cm and 12 cm is

Find the area of triangle whose sides are 9 cm, 12cm and 15 cm. Also, find the length of altitude corresponding to the largest side of the triangle.

In a !ABC the length of the median AD to the side BC is 4 units. If angleA=60^(@) and the area of the triangle is 2sqrt3 sq. units. The length of side BC, is

The area of a triangle is sqrt3 sq. units and angleB =60 If a^(2),b^(2),c^(2) are in A.P., the length of side AC is

To find the area of triangleABC , note that the lengths of the sides of triangleABC form (3-4-5) Pythagorean triple, where AC=4 . Hence, Find the area of triangleABC .

The area of an equilateral triangle with side 2sqrt3 cm is

Find the area of a triangle hose sides are 9c m, 12 cm\ a n d\ 15\ c mdot