Home
Class 12
MATHS
If log(10)m=(1)/(2), then log(10)10m^(2)...

If `log_(10)m=(1)/(2)`, then `log_(10)10m^(2)=`

A

2

B

2.5

C

3

D

10.25

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \log_{10}(10m^2) \) given that \( \log_{10} m = \frac{1}{2} \). ### Step-by-step Solution: 1. **Start with the given information:** \[ \log_{10} m = \frac{1}{2} \] 2. **Use the property of logarithms for multiplication:** The logarithm of a product can be expressed as the sum of the logarithms: \[ \log_{10}(10m^2) = \log_{10}(10) + \log_{10}(m^2) \] 3. **Calculate \( \log_{10}(10) \):** We know that: \[ \log_{10}(10) = 1 \] 4. **Use the property of logarithms for exponents:** The logarithm of a power can be expressed as the exponent times the logarithm of the base: \[ \log_{10}(m^2) = 2 \log_{10}(m) \] 5. **Substitute the value of \( \log_{10}(m) \):** From the given information, we have: \[ \log_{10}(m) = \frac{1}{2} \] Therefore: \[ \log_{10}(m^2) = 2 \cdot \frac{1}{2} = 1 \] 6. **Combine the results:** Now substitute back into the equation: \[ \log_{10}(10m^2) = \log_{10}(10) + \log_{10}(m^2) = 1 + 1 = 2 \] ### Final Answer: \[ \log_{10}(10m^2) = 2 \]

To solve the problem, we need to find the value of \( \log_{10}(10m^2) \) given that \( \log_{10} m = \frac{1}{2} \). ### Step-by-step Solution: 1. **Start with the given information:** \[ \log_{10} m = \frac{1}{2} \] ...
Promotional Banner

Topper's Solved these Questions

  • EXPONENTIAL AND LOGARITHMIC FUNCTIONS

    ENGLISH SAT|Exercise Exercises|10 Videos
  • ELEMENTARY ALGEBRA

    ENGLISH SAT|Exercise EXERCISE|12 Videos
  • FUNCTIONS

    ENGLISH SAT|Exercise EXERCISES|18 Videos

Similar Questions

Explore conceptually related problems

If "log"_(10) x =y, " then log"_(10^(3))x^(2) equals

If log_(10)2,log_(10)(2^(x)-1) and log_(10)(2^(x)+3) are in A.P then the value of x is

"If" ("log"_(10)a)/(2) = ("log"_(10)b)/(3) = ("log"_(10)c)/(5) , then bc =

If log_(10)(sin(x+pi/4))=(log_(10)6-1)/2 , the value of log_(10)(sinx)+log_(10)(cosx) is

If log_(10)5=a and log_(10)3=b ,then

Find the relation between x and y: log_(10)x+(1)/(2)log_(10)x+(1)/(4)log_(10)x+"...."=y "

Find the value of (i) (log_(10)5)(log_(10)20)+(log_(10)2)^(2) (ii) root3(5^((1)/(log_(7)5))+(1)/((-log_(10)0.1))) (iii) log_(0.75)log_(2)sqrtsqrt((1)/(0.125)) (iv)5^(log_(sqrt(5))2)+9^(log_(3)7)-8^(log_(2)5) (v)((1)/(49))^(1+log_(7)2)+5^(-log_(1//5)7) (vi) 7^(log_(3)5)+3^(log_(5)7)-5^(log_(3)7)-7^(log_(5)3)

If log_(10) 2 = a, log_(10)3 = b" then "log_(0.72)(9.6) in terms of a and b is equal to

Given log_(10 ) x = 2a and log_(10) y = (b)/(2) . If log_(10) P = 3a - 2b express P in terms of x and y.

Given (log _(10 ) ^(16))/(log _(10 ) ^(2)) = log _(10 ) ^(a) find the value of ( a+ 100) .