Home
Class 12
MATHS
If f(x)=log(2)x, then f((2)/(x))+f(x)=...

If `f(x)=log_(2)x`, then `f((2)/(x))+f(x)=`

A

`log_(2)((2)/(x))+log_(2)x`

B

1

C

`log_(2)((2+x^(2))/(x))`

D

`log_(2)((2)/(x))*log_(2)x`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( f\left(\frac{2}{x}\right) + f(x) \) given that \( f(x) = \log_2 x \). ### Step 1: Write down the function Given: \[ f(x) = \log_2 x \] ### Step 2: Find \( f\left(\frac{2}{x}\right) \) Now, we need to find \( f\left(\frac{2}{x}\right) \): \[ f\left(\frac{2}{x}\right) = \log_2\left(\frac{2}{x}\right) \] ### Step 3: Use the logarithmic property Using the property of logarithms that states \( \log_a\left(\frac{b}{c}\right) = \log_a b - \log_a c \), we can simplify: \[ f\left(\frac{2}{x}\right) = \log_2 2 - \log_2 x \] ### Step 4: Simplify \( \log_2 2 \) Since \( \log_2 2 = 1 \): \[ f\left(\frac{2}{x}\right) = 1 - \log_2 x \] ### Step 5: Add \( f(x) \) to \( f\left(\frac{2}{x}\right) \) Now, we add \( f(x) \) to \( f\left(\frac{2}{x}\right) \): \[ f\left(\frac{2}{x}\right) + f(x) = (1 - \log_2 x) + \log_2 x \] ### Step 6: Combine the terms The \( -\log_2 x \) and \( +\log_2 x \) cancel each other out: \[ f\left(\frac{2}{x}\right) + f(x) = 1 \] ### Final Answer Thus, the final result is: \[ f\left(\frac{2}{x}\right) + f(x) = 1 \] ---

To solve the problem, we need to find the value of \( f\left(\frac{2}{x}\right) + f(x) \) given that \( f(x) = \log_2 x \). ### Step 1: Write down the function Given: \[ f(x) = \log_2 x \] ...
Promotional Banner

Topper's Solved these Questions

  • EXPONENTIAL AND LOGARITHMIC FUNCTIONS

    ENGLISH SAT|Exercise Exercises|10 Videos
  • ELEMENTARY ALGEBRA

    ENGLISH SAT|Exercise EXERCISE|12 Videos
  • FUNCTIONS

    ENGLISH SAT|Exercise EXERCISES|18 Videos

Similar Questions

Explore conceptually related problems

If f(x)=|log_(e) x|,then

If f(x)=e^(x)+2x , then f(ln 2)=

If f(x) =|log_(e)|x||, then f'(x) equals

If f(x)=log_(x^(2))(logx) ,then f '(x)at x= e is

If f(x)=|log_(e)|x||," then "f'(x) equals

If f(x)=log_(e)x, then prove that :f(xyz)=f(x)+f(y)+f(z)

If f(x)=log_(x) (log x)," then find "f'(x) at x= e

If f(x)=log_(a)(log_(a)x) , then f'(x), is

If f(x)=log_x(lnx) then f'(x) at x=e is

If f(x)=log((1+x)/(1-x)),t h e n (a) f(x_1)f(x_2)=f(x_1+x_2) (b) f(x+2)-2f(x+1)+f(x)=0 (c) f(x)+f(x+1)=f(x^2+x) (d) f(x_1)+f(x_2)=f((x_1+x_2)/(1+x_1x_2))