Home
Class 12
MATHS
If log(2)m=sqrt(7)andlog(7)n=sqrt(2),mn=...

If `log_(2)m=sqrt(7)andlog_(7)n=sqrt(2)`,mn=

A

1

B

2

C

96

D

98

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the product \( mn \) given the equations \( \log_2 m = \sqrt{7} \) and \( \log_7 n = \sqrt{2} \). ### Step 1: Convert logarithmic equations to exponential form From the first equation \( \log_2 m = \sqrt{7} \), we can convert it to exponential form: \[ m = 2^{\sqrt{7}} \] From the second equation \( \log_7 n = \sqrt{2} \), we can also convert it to exponential form: \[ n = 7^{\sqrt{2}} \] ### Step 2: Find the product \( mn \) Now, we can find the product \( mn \): \[ mn = m \cdot n = (2^{\sqrt{7}}) \cdot (7^{\sqrt{2}}) \] ### Step 3: Simplify the expression We can write the product as: \[ mn = 2^{\sqrt{7}} \cdot 7^{\sqrt{2}} \] ### Step 4: Calculate the numerical value To find the numerical value of \( mn \), we can calculate \( 2^{\sqrt{7}} \) and \( 7^{\sqrt{2}} \): 1. Calculate \( \sqrt{7} \approx 2.64575 \), so \( 2^{\sqrt{7}} \approx 2^{2.64575} \approx 6.2582 \). 2. Calculate \( \sqrt{2} \approx 1.41421 \), so \( 7^{\sqrt{2}} \approx 7^{1.41421} \approx 15.673 \). Now, multiply these two results: \[ mn \approx 6.2582 \cdot 15.673 \approx 98.0 \] ### Final Answer Thus, the product \( mn \) is approximately \( 98 \). ---

To solve the problem, we need to find the product \( mn \) given the equations \( \log_2 m = \sqrt{7} \) and \( \log_7 n = \sqrt{2} \). ### Step 1: Convert logarithmic equations to exponential form From the first equation \( \log_2 m = \sqrt{7} \), we can convert it to exponential form: \[ m = 2^{\sqrt{7}} \] From the second equation \( \log_7 n = \sqrt{2} \), we can also convert it to exponential form: ...
Promotional Banner

Topper's Solved these Questions

  • EXPONENTIAL AND LOGARITHMIC FUNCTIONS

    ENGLISH SAT|Exercise Exercises|10 Videos
  • ELEMENTARY ALGEBRA

    ENGLISH SAT|Exercise EXERCISE|12 Videos
  • FUNCTIONS

    ENGLISH SAT|Exercise EXERCISES|18 Videos

Similar Questions

Explore conceptually related problems

If log_(7)log_(7) sqrt(7sqrt(7sqrt(7)))=1-a log_(7)2 and log_(15)log_(15) sqrt(15sqrt(15sqrt(15sqrt(15))))=1-b log_(15)2 , then a+b=

Which of the following numbers are non positive? (A) 5^(log_(11)7)-7(log_(11)5) (B) log_(3)(sqrt(7)-2) (C) log_(7)((1)/(2))^(-1//2) (D) log_(sqrt(2)-1) (sqrt(2)+1)/(sqrt(2)-1)

If log_(a)5=x and log_(a)7=y , then log_(a)sqrt(1,4)=

Which of the following when simplified reduces to unity? (log)_(3/2)(log)_4(log)_(sqrt(3))81 (log)_2 6+(log)_2sqrt(2/3) -1/6(log)_(sqrt(3/2))((64)/(27)) (d) (log)_(7/2)(1+2-3-:6)

Which is/are true ? (A) log_(0.2)3lt log_(2)3 (B) log_(sqrt(5))10ltlog _(sqrt(3))11 (C) log_(sqrt(3))10gtlog _(sqrt(5))11 (D) log _((2-sqrt3))(7-4sqrt(3))gtlog_((sqrt(3)-1))(4-2sqrt(3))

Find the value of the following: (i) log_(10) 2 + log_(10) 5 (ii) log_(3) (sqrt(11)-sqrt2) + log_(3) (sqrt11+sqrt2) (iii) log_(7) 35 - log_(7) 5

If a, b, c are positive numbers such that a^(log_(3)7) =27, b^(log_(7)11)=49, c^(log_(11)25)=sqrt(11) , then the sum of digits of S=a^((log_(3)7)^(2))+b^((log_(7)11)^(2))+c^((log_(11)25)^(2)) is :

|{:(5sqrt(log_(5)3),,5sqrt(log_(5)3),,5sqrt(log_(5)3)),(3^(-log_(1//3)4),,(0.1)^(log_(0.01)4),,7^(log_(7)3)),(7,,3,,5):}|" is equal to ""____"

Simplify (5+sqrt(7))(5+sqrt(2))

Prove that log_(7) log_(7)sqrt(7sqrt((7sqrt7))) = 1-3 log_(7) 2 .