`Log_(7)5=`

A

`1.2`

B

`1.1`

C

`0.9`

D

`0.8`

Text Solution

Verified by Experts

The correct Answer is:
D

`log_(7)5=(log5)/(log7)~~(0.699)/(0.845)~~0.8`.
Promotional Banner

Topper's Solved these Questions

  • EXPONENTIAL AND LOGARITHMIC FUNCTIONS

    ENGLISH SAT|Exercise Exercises|10 Videos
  • ELEMENTARY ALGEBRA

    ENGLISH SAT|Exercise EXERCISE|12 Videos
  • FUNCTIONS

    ENGLISH SAT|Exercise EXERCISES|18 Videos

Similar Questions

Explore conceptually related problems

log_(7)9=

If log_(175)5x=log_(343)7x , then the value of log_(42)(x^(4)-2x^(2)+7) is

Find the value of (i) (log_(10)5)(log_(10)20)+(log_(10)2)^(2) (ii) root3(5^((1)/(log_(7)5))+(1)/((-log_(10)0.1))) (iii) log_(0.75)log_(2)sqrtsqrt((1)/(0.125)) (iv)5^(log_(sqrt(5))2)+9^(log_(3)7)-8^(log_(2)5) (v)((1)/(49))^(1+log_(7)2)+5^(-log_(1//5)7) (vi) 7^(log_(3)5)+3^(log_(5)7)-5^(log_(3)7)-7^(log_(5)3)

If log_(a)5=x and log_(a)7=y , then log_(a)sqrt(1,4)=

Given that N=7^(log_(49),900),A=2^(log_(2)4)+3^(log_(2)4)-4^(log_(2)2),D=(log_(5)49)(log_(7)125) Then answer the following questions : (Using the values of N, A, D) If log_(A)D=a, then the value of log_(6)12 is (in terms of a)

If a, b, c are positive numbers such that a^(log_(3)7) =27, b^(log_(7)11)=49, c^(log_(11)25)=sqrt(11) , then the sum of digits of S=a^((log_(3)7)^(2))+b^((log_(7)11)^(2))+c^((log_(11)25)^(2)) is :

If log_(7) 2 = m , then find log_(49) 28 in terms of m.

If log_(4)5 = x and log_(5)6 = y then

If log_(7)12=a ,log_(12)24=b , then find value of log_(54)168 in terms of a and b.

If log_(b)5=a,log_(b)2.5=c,and5^(x)=2.5 , then x=