Home
Class 12
MATHS
3sqrt(2^(5))sqrt(4^(9))sqrt(8)=...

`3sqrt(2^(5))sqrt(4^(9))sqrt(8)=`

A

1.9

B

`2.0`

C

`2.1`

D

`2.3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( 3\sqrt{2^5}\sqrt{4^9}\sqrt{8} \), we can break it down step by step. ### Step 1: Rewrite the square roots in exponential form We can express the square roots in terms of exponents: \[ 3\sqrt{2^5} = 3 \cdot (2^5)^{1/2} = 3 \cdot 2^{5/2} \] \[ \sqrt{4^9} = (4^9)^{1/2} = 4^{9/2} \] \[ \sqrt{8} = 8^{1/2} \] ### Step 2: Rewrite \(4\) and \(8\) in terms of base \(2\) Next, we rewrite \(4\) and \(8\) as powers of \(2\): \[ 4 = 2^2 \quad \text{so} \quad 4^{9/2} = (2^2)^{9/2} = 2^{2 \cdot \frac{9}{2}} = 2^9 \] \[ 8 = 2^3 \quad \text{so} \quad 8^{1/2} = (2^3)^{1/2} = 2^{3/2} \] ### Step 3: Combine all terms Now we can combine all the terms: \[ 3\sqrt{2^5}\sqrt{4^9}\sqrt{8} = 3 \cdot 2^{5/2} \cdot 2^9 \cdot 2^{3/2} \] ### Step 4: Use the properties of exponents Using the property of exponents that states \(a^m \cdot a^n = a^{m+n}\), we can combine the powers of \(2\): \[ 2^{5/2} \cdot 2^9 \cdot 2^{3/2} = 2^{\left(\frac{5}{2} + 9 + \frac{3}{2}\right)} \] ### Step 5: Simplify the exponent Now we need to simplify the exponent: \[ \frac{5}{2} + 9 + \frac{3}{2} = \frac{5}{2} + \frac{18}{2} + \frac{3}{2} = \frac{5 + 18 + 3}{2} = \frac{26}{2} = 13 \] So we have: \[ 3 \cdot 2^{13} \] ### Step 6: Calculate the final result Now we can calculate \(3 \cdot 2^{13}\): \[ 2^{13} = 8192 \quad \text{so} \quad 3 \cdot 8192 = 24576 \] Thus, the final answer is: \[ \boxed{24576} \]

To solve the expression \( 3\sqrt{2^5}\sqrt{4^9}\sqrt{8} \), we can break it down step by step. ### Step 1: Rewrite the square roots in exponential form We can express the square roots in terms of exponents: \[ 3\sqrt{2^5} = 3 \cdot (2^5)^{1/2} = 3 \cdot 2^{5/2} \] \[ ...
Promotional Banner

Topper's Solved these Questions

  • EXPONENTIAL AND LOGARITHMIC FUNCTIONS

    ENGLISH SAT|Exercise Exercises|10 Videos
  • ELEMENTARY ALGEBRA

    ENGLISH SAT|Exercise EXERCISE|12 Videos
  • FUNCTIONS

    ENGLISH SAT|Exercise EXERCISES|18 Videos

Similar Questions

Explore conceptually related problems

Evaluate : lim_(n to oo)[(sqrt(n))/((3+4sqrt(n))^(2))+(sqrt(n))/(sqrt(2)(3sqrt(2)+4sqrt(n))^(2))+(sqrt(n))/(sqrt(3)(3sqrt(3)+4sqrt(n))^(2))+.......+(1)/(49n)]

Rationalise the denominator and simplify: (i) (4sqrt(3)+5sqrt(2))/(sqrt(48)+\ sqrt(18)) (ii) (2sqrt(3)-\ sqrt(5))/(2\ sqrt(2)+\ 3sqrt(3))

Compute the following: sqrt(-25)+3sqrt(-4)+2sqrt(-9)

Rationalize the denominatiors of : (2sqrt(5)+3sqrt(2))/(2sqrt(5)-3sqrt(2))

Simplify each of the following : (i) 3/(5-sqrt(3))+2/(5+sqrt(3)) (ii) (4+sqrt(5))/(4-sqrt(5))+(4-sqrt(5))/(4+sqrt(5)) (iii) (sqrt(5)-2)/(sqrt(5)+2)-(sqrt(5)+2)/(sqrt(5)-2)

Simplify: (i) (3sqrt(2)-2sqrt(2))/(3sqrt(2)+\ 2sqrt(3))+(sqrt(12))/(sqrt(3)-\ sqrt(2)) (ii) (sqrt(5)+\ sqrt(3))/(sqrt(5)-\ sqrt(3))+(sqrt(5)-\ sqrt(3))/(sqrt(5)+\ sqrt(3))

Simplify each of the following : (i)(sqrt(2)+1)/(sqrt(2)-1)+(sqrt(2)-1)/(sqrt(2)+1)" "(ii)(sqrt(5)+sqrt(3))/(sqrt(5)-sqrt(3))+(sqrt(5)-sqrt(3))/(sqrt(5)+sqrt(3))" "(iii)(2)/(sqrt(5)+sqrt(3))+(1)/(sqrt(3)+sqrt(2))-(3)/(sqrt(5)+sqrt(2))" "(iv)(sqrt(7)+sqrt(5))/(sqrt(7)-sqrt(5))-(sqrt(7)-sqrt(5))/(sqrt(7)+sqrt(5))

The value of (log)_(sqrt(4+2sqrt(2))sqrt(4-2sqrt(2)))2^9 is...........

Simplify each of the following by rationalising the denominator; 1/(5+sqrt(2)) (ii) (5+sqrt(6))/(5-sqrt(6)) (iii) (7+3sqrt(5))/(7-3sqrt(5)) (iv) (2sqrt(3)-sqrt(5))/(2sqrt(2)+3sqrt(3))

Sum of 1/(sqrt(2)+sqrt(5))+1/(sqrt(5)+sqrt(8))+1/(sqrt(8)+sqrt(11))+1/(sqrt(11)+sqrt(14))+..to n terms= (A) n/(sqrt(3n+2)-sqrt(2)) (B) 1/3 (sqrt(2)-sqrt(3n+2) (C) n/(sqrt(3n+2)+sqrt(2)) (D) none of these