Home
Class 12
MATHS
lim(x to2)((x^(3)-8)/(x^(4)-16))=...

`lim_(x to2)((x^(3)-8)/(x^(4)-16))=`

A

0

B

`(3)/(8)`

C

`(1)/(2)`

D

`(4)/(7)`

Text Solution

Verified by Experts

The correct Answer is:
B

Factor and reduce `((x-2)(x^(2)+2x+4))/((x-2)(x+2)(x^(2)+4))`. Substitute 2 for x and the fraction equals `(3)/(8)`.
Promotional Banner

Topper's Solved these Questions

  • RATIONAL FUNCTIONS

    ENGLISH SAT|Exercise EXERCISES|5 Videos
  • QUADRATIC FUNCTIONS

    ENGLISH SAT|Exercise EXERCISES|7 Videos
  • SAT MATH STRATEGIES

    ENGLISH SAT|Exercise EXAMPLE|69 Videos

Similar Questions

Explore conceptually related problems

Evaluate, lim_(x to 2) (x^(3) - 8)/(x^(2) - 4)

lim_(xrarr2) (x^(3)-8)/(x^(2)-4)

The value of lim_(xto2) (((x^(3)-4x)/(x^(3)-8))^(-1)-((x+sqrt(2x))/(x-2)-(sqrt(2))/(sqrt(x)-sqrt(2)))^(-1))" is "

Evaluate the following limits : Lim_(x to 2) ((x^(8)-16)/(x^(4)-4) +(x^(2)-9)/(x-3))

lim_(x to oo)((5x^(2)-2)/(3x^(2)+8))=

lim_(x to -1) (x^(8)+x^(4)-2)/(x-5)

Evaluate: lim_( x to 2) (x^(2)-4)/(x^(3)-4x^(2)+4x)

lim_(xtooo) ((x^(3))/(3x^(2)-4)-(x^(2))/(3x+2))" is equal to "

lim_(x to 1//2) (8x^(3) - 1)/(16 x^(4) - 1) is equal to

lim_(x to 1)(x^(2)-6x+5)/(x^(2)+3x-4)=