Home
Class 12
MATHS
If f(x)=[4x]-2x with domain 0 le x l...

If `f(x)=[4x]-2x` with domain ` 0 le x le 2`, then f(x) can also be written as

A

2x

B

`-x`

C

`-2x`

D

none of the above

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the function \( f(x) = [4x] - 2x \) over the domain \( 0 \leq x \leq 2 \). Here, \( [4x] \) denotes the greatest integer less than or equal to \( 4x \). ### Step-by-step Solution: 1. **Identify the intervals**: Since \( 4x \) varies from \( 0 \) to \( 8 \) as \( x \) goes from \( 0 \) to \( 2 \), we need to determine the intervals where \( [4x] \) remains constant. The integer values of \( 4x \) will change at \( x = \frac{1}{4}, \frac{1}{2}, \frac{3}{4}, \) and \( 1, \) and so on, up to \( x = 2 \). 2. **Calculate \( f(x) \) for different intervals**: - For \( 0 \leq x < \frac{1}{4} \): - \( 4x < 1 \) so \( [4x] = 0 \) - \( f(x) = 0 - 2x = -2x \) - For \( \frac{1}{4} \leq x < \frac{1}{2} \): - \( 1 \leq 4x < 2 \) so \( [4x] = 1 \) - \( f(x) = 1 - 2x \) - For \( \frac{1}{2} \leq x < \frac{3}{4} \): - \( 2 \leq 4x < 3 \) so \( [4x] = 2 \) - \( f(x) = 2 - 2x \) - For \( \frac{3}{4} \leq x < 1 \): - \( 3 \leq 4x < 4 \) so \( [4x] = 3 \) - \( f(x) = 3 - 2x \) - For \( 1 \leq x < \frac{5}{4} \): - \( 4 \leq 4x < 5 \) so \( [4x] = 4 \) - \( f(x) = 4 - 2x \) - For \( \frac{5}{4} \leq x < \frac{3}{2} \): - \( 5 \leq 4x < 6 \) so \( [4x] = 5 \) - \( f(x) = 5 - 2x \) - For \( \frac{3}{2} \leq x < \frac{7}{4} \): - \( 6 \leq 4x < 7 \) so \( [4x] = 6 \) - \( f(x) = 6 - 2x \) - For \( \frac{7}{4} \leq x \leq 2 \): - \( 7 \leq 4x < 8 \) so \( [4x] = 7 \) - \( f(x) = 7 - 2x \) 3. **Combine the results**: We can summarize the piecewise function as follows: \[ f(x) = \begin{cases} -2x & \text{for } 0 \leq x < \frac{1}{4} \\ 1 - 2x & \text{for } \frac{1}{4} \leq x < \frac{1}{2} \\ 2 - 2x & \text{for } \frac{1}{2} \leq x < \frac{3}{4} \\ 3 - 2x & \text{for } \frac{3}{4} \leq x < 1 \\ 4 - 2x & \text{for } 1 \leq x < \frac{5}{4} \\ 5 - 2x & \text{for } \frac{5}{4} \leq x < \frac{3}{2} \\ 6 - 2x & \text{for } \frac{3}{2} \leq x < \frac{7}{4} \\ 7 - 2x & \text{for } \frac{7}{4} \leq x \leq 2 \end{cases} \] 4. **Conclusion**: Since the function \( f(x) \) changes at multiple intervals and does not simplify to a single expression over the entire domain, the correct answer is that \( f(x) \) cannot be expressed as \( 2x - x - 2x \) or any other single function. Thus, the answer is "none of the above."

To solve the problem, we need to analyze the function \( f(x) = [4x] - 2x \) over the domain \( 0 \leq x \leq 2 \). Here, \( [4x] \) denotes the greatest integer less than or equal to \( 4x \). ### Step-by-step Solution: 1. **Identify the intervals**: Since \( 4x \) varies from \( 0 \) to \( 8 \) as \( x \) goes from \( 0 \) to \( 2 \), we need to determine the intervals where \( [4x] \) remains constant. The integer values of \( 4x \) will change at \( x = \frac{1}{4}, \frac{1}{2}, \frac{3}{4}, \) and \( 1, \) and so on, up to \( x = 2 \). 2. **Calculate \( f(x) \) for different intervals**: - For \( 0 \leq x < \frac{1}{4} \): ...
Promotional Banner

Topper's Solved these Questions

  • PIECEWISE FUNCTIONS

    ENGLISH SAT|Exercise EXERCISES|8 Videos
  • PASSPORT TO ADVANCED MATH

    ENGLISH SAT|Exercise EXERCISE|80 Videos
  • PLANE GEOMETRY/ TRIGONOMETRY

    ENGLISH SAT|Exercise EXERCISE|12 Videos

Similar Questions

Explore conceptually related problems

Let f(x) = x(2-x), 0 le x le 2 . If the definition of f(x) is extended over the set R-[0,2] by f (x+1)= f(x) , then f is a

Let f (x)= max (x,x ^(2) x ^(3)) in -2 le x le 2. Then:

If f(x) = -1 +|x-1|, -1 le x le 3 " and " g(x)=2-|x+1|, -2 le x le 2, then find fog(x) " and " gof(x).

Suppose f:[-2,2] to R is defined by f(x)={{:(-1 " for " -2 le x le 0),(x-1 " for " 0 le x le 2):} , then {x in [-2,2]: x le 0 and f(|x|)=x}=

If f (x)= {{:(1+x, 0 le x le 2),( 3x-2, 2 lt x le 3):}, then f (f(x)) is not differentiable at:

Statement-1: If |f(x)| le |x| for all x in R then |f(x)| is continuous at 0. Statement-2: If f(x) is continuous then |f(x)| is also continuous.

If f : {x : -1 le x le 1} rarr {x : -1 le x le 1} , then which is/are bijective ?

if f(x) = {[3x+4 , 0 le x le 2],[5x , 2 le x le 3]}, then evaluate int_(0)^(3) f(x) dx.

If f(x)=[{:(sqrt(1-x), , , 0 le x le 1),((7x-6)^(-1) , , ,1 le x le 2):} then int_(0)^(2)f(x)dx equals

If f(x) = ax^(2) + bx + c is such that |f(0)| le 1, |f(1)| le 1 and |f(-1)| le 1 , prove that |f(x)| le 5//4, AA x in [-1, 1]