Home
Class 12
MATHS
If z=8-2i,z^(2)=...

If `z=8-2i,z^(2)=`

A

`60-32i`

B

`64+4i`

C

`64-4i`

D

`60`

Text Solution

AI Generated Solution

The correct Answer is:
To find \( z^2 \) where \( z = 8 - 2i \), we will follow these steps: ### Step 1: Write the expression for \( z^2 \) Given \( z = 8 - 2i \), we can express \( z^2 \) as: \[ z^2 = (8 - 2i)^2 \] **Hint:** Remember that squaring a binomial involves using the formula \( (a - b)^2 = a^2 - 2ab + b^2 \). ### Step 2: Apply the binomial expansion Using the formula \( (a - b)^2 = a^2 - 2ab + b^2 \): - Let \( a = 8 \) and \( b = 2i \). \[ z^2 = 8^2 - 2 \cdot 8 \cdot (2i) + (2i)^2 \] **Hint:** Calculate each term separately: \( a^2 \), \( -2ab \), and \( b^2 \). ### Step 3: Calculate each term 1. Calculate \( 8^2 \): \[ 8^2 = 64 \] 2. Calculate \( -2 \cdot 8 \cdot (2i) \): \[ -2 \cdot 8 \cdot (2i) = -32i \] 3. Calculate \( (2i)^2 \): \[ (2i)^2 = 4i^2 = 4(-1) = -4 \] **Hint:** Remember that \( i^2 = -1 \). ### Step 4: Combine the results Now substitute the calculated values back into the expression: \[ z^2 = 64 - 32i - 4 \] ### Step 5: Simplify the expression Combine the real parts: \[ z^2 = (64 - 4) - 32i = 60 - 32i \] ### Final Answer Thus, the value of \( z^2 \) is: \[ \boxed{60 - 32i} \]

To find \( z^2 \) where \( z = 8 - 2i \), we will follow these steps: ### Step 1: Write the expression for \( z^2 \) Given \( z = 8 - 2i \), we can express \( z^2 \) as: \[ z^2 = (8 - 2i)^2 \] ...
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ENGLISH SAT|Exercise EXERCISE|6 Videos
  • ADDITIONAL TOPICS IN MATH

    ENGLISH SAT|Exercise EXERCISE|45 Videos
  • CONIC SECTIONS

    ENGLISH SAT|Exercise EXERCISES|6 Videos

Similar Questions

Explore conceptually related problems

If z_1=2-i ,\ z_2=1+i , find |(z_1+z_2+1)/(z_1-z_2+i)|

If z_1=2-i ,z_2=1+i , find |(z_1+z_2+1)/(z_1-z_2+i)|

If z_1=2-i ,z_2=1+i , find |(z_1+z_2+1)/(z_1-z_2+i)|

If z_1=2-i ,\ z_2=1+i , find |(z_1+z_2+1)/(z_1-z_2+i)| .

If z_(1)=2-i, z_(2)=1+ 2i, then find the value of the following : (i) Re((z_(1)*z_(2))/(bar(z)_(2))) (ii) Im (z_(1)*bar(z)_(2))

If z_1=2-i ,\ z_2=-2+i , find : Im(1/(z_1bar(z_2))) .

If z_1=3−2i,z_2=2−i and z_3=2+5i then find z_1+z_2−3z_3

If z_1=2-i ,\ z_2=-2+i , find : R e((z_1z_2)/bar(z_1))

If z_(1)=3 -2i ,z_(2) = 2-i and z_(3) = 2+ 5i then find z_(1) + z_(2) - 2z_(3)

if z1= 1 +i, z_(2)= 2 -3i and z_(3) = 5+ 2i then find z_(1)-z_(2)+3z_(3)