To find \( z^2 \) where \( z = 8 - 2i \), we will follow these steps:
### Step 1: Write the expression for \( z^2 \)
Given \( z = 8 - 2i \), we can express \( z^2 \) as:
\[
z^2 = (8 - 2i)^2
\]
**Hint:** Remember that squaring a binomial involves using the formula \( (a - b)^2 = a^2 - 2ab + b^2 \).
### Step 2: Apply the binomial expansion
Using the formula \( (a - b)^2 = a^2 - 2ab + b^2 \):
- Let \( a = 8 \) and \( b = 2i \).
\[
z^2 = 8^2 - 2 \cdot 8 \cdot (2i) + (2i)^2
\]
**Hint:** Calculate each term separately: \( a^2 \), \( -2ab \), and \( b^2 \).
### Step 3: Calculate each term
1. Calculate \( 8^2 \):
\[
8^2 = 64
\]
2. Calculate \( -2 \cdot 8 \cdot (2i) \):
\[
-2 \cdot 8 \cdot (2i) = -32i
\]
3. Calculate \( (2i)^2 \):
\[
(2i)^2 = 4i^2 = 4(-1) = -4
\]
**Hint:** Remember that \( i^2 = -1 \).
### Step 4: Combine the results
Now substitute the calculated values back into the expression:
\[
z^2 = 64 - 32i - 4
\]
### Step 5: Simplify the expression
Combine the real parts:
\[
z^2 = (64 - 4) - 32i = 60 - 32i
\]
### Final Answer
Thus, the value of \( z^2 \) is:
\[
\boxed{60 - 32i}
\]
To find \( z^2 \) where \( z = 8 - 2i \), we will follow these steps:
### Step 1: Write the expression for \( z^2 \)
Given \( z = 8 - 2i \), we can express \( z^2 \) as:
\[
z^2 = (8 - 2i)^2
\]
...
Topper's Solved these Questions
COMPLEX NUMBERS
ENGLISH SAT|Exercise EXERCISE|6 Videos
ADDITIONAL TOPICS IN MATH
ENGLISH SAT|Exercise EXERCISE|45 Videos
CONIC SECTIONS
ENGLISH SAT|Exercise EXERCISES|6 Videos
Similar Questions
Explore conceptually related problems
If z_1=2-i ,\ z_2=1+i , find |(z_1+z_2+1)/(z_1-z_2+i)|
If z_1=2-i ,z_2=1+i , find |(z_1+z_2+1)/(z_1-z_2+i)|
If z_1=2-i ,z_2=1+i , find |(z_1+z_2+1)/(z_1-z_2+i)|
If z_1=2-i ,\ z_2=1+i , find |(z_1+z_2+1)/(z_1-z_2+i)| .
If z_(1)=2-i, z_(2)=1+ 2i, then find the value of the following : (i) Re((z_(1)*z_(2))/(bar(z)_(2))) (ii) Im (z_(1)*bar(z)_(2))
If z_1=2-i ,\ z_2=-2+i , find : Im(1/(z_1bar(z_2))) .
If z_1=3−2i,z_2=2−i and z_3=2+5i then find z_1+z_2−3z_3
If z_1=2-i ,\ z_2=-2+i , find : R e((z_1z_2)/bar(z_1))
If z_(1)=3 -2i ,z_(2) = 2-i and z_(3) = 2+ 5i then find z_(1) + z_(2) - 2z_(3)
if z1= 1 +i, z_(2)= 2 -3i and z_(3) = 5+ 2i then find z_(1)-z_(2)+3z_(3)