Home
Class 12
MATHS
If a(1)=5 and a(n)=1+sqrt(a(n-1)), find...

If `a_(1)=5 and a_(n)=1+sqrt(a_(n-1)),` find `a_(3)`.

A

2.623

B

2.635

C

2.673

D

2.799

Text Solution

AI Generated Solution

The correct Answer is:
To find \( a_3 \) given that \( a_1 = 5 \) and \( a_n = 1 + \sqrt{a_{n-1}} \), we will follow these steps: ### Step 1: Find \( a_2 \) Using the recursive formula: \[ a_2 = 1 + \sqrt{a_1} \] Substituting the value of \( a_1 \): \[ a_2 = 1 + \sqrt{5} \] Calculating \( \sqrt{5} \): \[ \sqrt{5} \approx 2.236 \] Now substituting this value back: \[ a_2 \approx 1 + 2.236 = 3.236 \] ### Step 2: Find \( a_3 \) Now, we will use the value of \( a_2 \) to find \( a_3 \): \[ a_3 = 1 + \sqrt{a_2} \] Substituting the value of \( a_2 \): \[ a_3 = 1 + \sqrt{3.236} \] Calculating \( \sqrt{3.236} \): \[ \sqrt{3.236} \approx 1.797 \] Now substituting this value back: \[ a_3 \approx 1 + 1.797 = 2.797 \] ### Final Answer Thus, the value of \( a_3 \) is approximately: \[ \boxed{2.797} \]

To find \( a_3 \) given that \( a_1 = 5 \) and \( a_n = 1 + \sqrt{a_{n-1}} \), we will follow these steps: ### Step 1: Find \( a_2 \) Using the recursive formula: \[ a_2 = 1 + \sqrt{a_1} \] Substituting the value of \( a_1 \): ...
Promotional Banner

Topper's Solved these Questions

  • SEQUENCES AND SERIES

    ENGLISH SAT|Exercise EXERCISES|5 Videos
  • SAT MATH STRATEGIES

    ENGLISH SAT|Exercise EXAMPLE|69 Videos
  • SOLVING POLYNOMIAL INEQUALITIES

    ENGLISH SAT|Exercise EXERCISES|3 Videos

Similar Questions

Explore conceptually related problems

If a_(1)=3 and a_(n)=2a_(n-1)+5 , find a_(4) .

If a_(1) = 2 and a_(n) - a_(n-1) = 2n (n ge 2) , find the value of a_(1) + a_(2) + a_(3)+…+a_(20) .

If a_(0) = 0.4 and a_(n+1) = 2|a_(n)|-1 , then a_(5) =

If a_(0)=x , a_(n+1)=f*(a_(n)) , n=01,2,3,…., find a_(n) when f(x)=(1)/(1-x)

If a_(0)=x , a_(n+1)=f*(a_(n)) , n=01,2,3,…., find a_(n) when f(x)=sqrt(|x|)

If a_(1)=3 and a_(n)=n+a_(n-1) , the sum of the first five term is

If a_(1)=1, a_(2)=1, and a_(n)=a_(n-1)+a_(n-2) for n ge 3, find the first 7 terms of the sequence.

Let a_(1),a_(2),a_(n) be sequence of real numbers with a_(n+1)=a_(n)+sqrt(1+a_(n)^(2)) and a_(0)=0 . Prove that lim_(xtooo)((a_(n))/(2^(n-1)))=2/(pi)

If a_(1)=1, a_(2)=5 and a_(n+2)=5a_(n+1)-6a_(n), n ge 1 , show by using mathematical induction that a_(n)=3^(n)-2^(n)

A sequence is defined as follows : a_(a)=4, a_(n)=2a_(n-1)+1, ngt2 , find (a_(n+1))/(a_(n)) for n=1, 2, 3.