`log_(7)9=`

A

0.89

B

0.95

C

1.13

D

1.21

Text Solution

Verified by Experts

The correct Answer is:
C

Use the change-of-base theorem and your calculator to get.
`log_(7)9=(log_(10)9)/(log_(10)7)=(0.9542)/(0.8421)~~1.13`. In some of the newer `TI-84^(+)` calculators, you may enter the base, resulting in a single calculation.
Promotional Banner

Topper's Solved these Questions

  • COUNTING

    ENGLISH SAT|Exercise EXERCISE|10 Videos
  • ELEMENTARY ALGEBRA

    ENGLISH SAT|Exercise EXERCISE|12 Videos

Similar Questions

Explore conceptually related problems

Log_(7)5=

Evaluate: log_(9)27 - log_(27)9

Evaluate: log_(9)27 - log_(27)9

If log_(7)12=a ,log_(12)24=b , then find value of log_(54)168 in terms of a and b.

Suppose that a and b are positive real numbers such that log_(27)a+log_9(b)=7/2 and log_(27)b+log_9a=2/3 .Then the value of the ab equals

The value of ((log_(2)9)^(2))^(1/(log_(2)(log_(2)9)))xx(sqrt7)^(1/(log_(4)7)) is ________.

If log_(9)x +log_(4)y = (7)/(2) and log_(9) x - log_(8)y =- (3)/(2) , then x +y equals

Let y=(2^(log_(2^(1//4))x)-3^(log_(27) (x^(2)+1)^(3))-2x)/(7^(4 log_(4 9)x)-x-1) and (dy)/(dx)=ax+b , the ordered pair (a, b) is

Find the value of (i) (log_(10)5)(log_(10)20)+(log_(10)2)^(2) (ii) root3(5^((1)/(log_(7)5))+(1)/((-log_(10)0.1))) (iii) log_(0.75)log_(2)sqrtsqrt((1)/(0.125)) (iv)5^(log_(sqrt(5))2)+9^(log_(3)7)-8^(log_(2)5) (v)((1)/(49))^(1+log_(7)2)+5^(-log_(1//5)7) (vi) 7^(log_(3)5)+3^(log_(5)7)-5^(log_(3)7)-7^(log_(5)3)

Prove that log_(7) log_(7)sqrt(7sqrt((7sqrt7))) = 1-3 log_(7) 2 .