Home
Class 11
MATHS
A square non-singular matrix A satisfies...

A square non-singular matrix A satisfies `A^2-A+2I=0," then "A^(-1)`=

Promotional Banner

Similar Questions

Explore conceptually related problems

A square nonsingular matrix satisfies A^(2)-A+2I=0 then A^(-1)=

If A is a non-singular square matrix such that A^(2)-7A+5I=0, then A^(-1)

If A is a square matrix satisfying the equation A^(2)-4A-5I=0 , then A^(-1)=

If A is a non-singular matrix such that (A-2I)(A-4I)=0 , then (A+ 8 A^(-1)) = .....

If A is a non-singular matrix then |A^(-1)| =

If A is a non-singular matrix such that A^(2) + A - I = 0 , what is A^(-1) ?

If A is a 3xx3 non - singular matrix and if |A| = 3 , then | (2A)^(-1)| =

If A is non-singular matrix and (A+I)(A-I) = 0 then A+A^(-1)= . . .

If A is 3xx 3 non- singular matrix and if |A |=3 then |(2A)^(-1) |=