Home
Class 12
MATHS
[f(2,oo)rarr(-oo,4]," where "f(x)=x(4-x)...

[f(2,oo)rarr(-oo,4]," where "f(x)=x(4-x)" then "],[f'(x)_(" is ")]

Promotional Banner

Similar Questions

Explore conceptually related problems

If f :[2,oo)rarr(-oo,4], where f(x)=x(4-x) then find f^-1(x)

If f:[2,oo)rarr(-oo,4], where f(x)=x(4-x) then find f^(-1)(x)

f:(-oo,oo)rarr(-oo,oo) defined by f(x)=x^(3)

f:(0,oo)rarr(0,oo) defined by f(x)=x^(2) is

Let f :[1/2,oo)rarr[3/4,oo), where f(x)=x^2-x+1. Find the inverse of f(x).

f:(-oo,oo)rarr(-oo,oo) defined by f(x)=|x| is

If f:[1,oo)rarr[1,oo) is defined as f(x)=3^(x(x-2)) then f^(-1)(x) is equal to

Let f:[(1)/(2),oo)rarr[(3)/(4),oo), where f(x)=x^(2)-x+1. Find the inverse of f(x) Hence or otherwise solve the equation,x^(2)-x+1=(1)/(2)+sqrt(x-(3)/(4))

Let f :[1/2,oo)rarr[3/4,oo), where f(x)=x^2-x+1. Find the inverse of f(x). Hence or otherwise solve the equation, x^2-x+1=1/2+sqrt(x-3/4.