Home
Class 12
MATHS
Let v=2 vec i+vec j-vec k, w=vec i+ 3 ve...

Let `v=2 vec i+vec j-vec k`, `w=vec i+ 3 vec k and vec u` is a unit vector then the maximum value of scalar triple product.

Promotional Banner

Similar Questions

Explore conceptually related problems

Let vec nu = 2i+j-k and vec w = i+3k . If vec u is a unit vector, then the maximum values of the scalar triple proudct [vec u vec nu vec w] =

If vecV=2vec i+ vec(j) - vec(k) " and " vec(W) = vec(i) + 3vec(k) . if vec (U) is a unit vectors then the maximum value of the scalar triple product [vec(U) , vec(V) , vec(W)] is

Let vec V=2hat i+hat j-hat k and vec W=hat i+3hat k. If vec U is a unit vector,then the maximum value of the scalar triple product [UVW] is -1 b.sqrt(10)+sqrt(6) c.sqrt(59)d.sqrt(60)

Let b=-vec i+4vec j+6vec k,vec c=2vec i-7vec j-10vec k If vec a be a unit vector and the scalar triple product [vec avec bvec c] has the greatest value then vec a is

Let vec b=2hat i+hat j-hat k,vec k=hat i+3hat k, If vec a is a unit vector then find the maximum value of [vec avec bvec cvec c]

If three vector 2vec i-vec j-vec k,vec i+2vec j-3vec k,3vec i+lambdavec j+5vec k are coplanar then the value of lambda is :

Given are three vectors vec u = 2vec i-vec j-vec kvec v = vec i-vec j + 2vec k and vec w = vec i-vec k. Find volume of parallelopiped

Let vec a, vec b and vec c be three vectors. Then scalar triple product [vec a, vec b, vec c]=

Let vec u=2hat i+hat k and vec v=-3hat j+2hat k be vectors and vec w be a unit vector in the xy-plane Then the maximum possible value of |(vec u xxvec v)*vec w is