Home
Class 11
MATHS
lim(x rarr2)((1+x)^(n)-3^(n))/(x-2)=n*3^...

lim_(x rarr2)((1+x)^(n)-3^(n))/(x-2)=n*3^(n-1)

Promotional Banner

Similar Questions

Explore conceptually related problems

Show : underset(xrarr2)"lim"((1+x)^(n)-3^(n))/(x-2)=n.3^(n-1)

find n in N, if lim_(x rarr2)(x^(n)-2^(n))/(x-2)=80

lim_(lim(n rarr oo))(n*3^(n))/(n(x-2)^(n)+n*3^(n+1)-3^(n))=(1)/(3)

lim_(x rarr2)(x^(n)-2^(n))/(x-2)=80 amd m in N, then find the value of n

If lim_(x rarr0)(x^(n)*sin^(n)x)/(x^(n)-sin^(n)x) is non-zero finite,then n must be equal to 4(b)1(c)2(d)3

The value of lim_(x rarr oo)(5^(n+1)+3^(n)-2^(2n))/(5^(n)+2^(n)+3^(2n+1))

lim_(x rarr oo) (1+2/n)^(2n)=

lim_(n rarr oo)(2^(n)+3^(n))^(1/n)

lim_ (x rarr a) (x ^ (n) -a ^ (n)) / (xa) = n * a ^ (n-1)