Home
Class 8
MATHS
Simplify: a^2b(a^3-a+1)-a b(a^4-2a^2+2a...

Simplify: `a^2b(a^3-a+1)-a b(a^4-2a^2+2a)-b(a^3-a^2-1)`

Text Solution

AI Generated Solution

To simplify the expression \( a^2b(a^3 - a + 1) - ab(a^4 - 2a^2 + 2a) - b(a^3 - a^2 - 1) \), we will follow these steps: ### Step 1: Distribute each term We will distribute \( a^2b \), \( -ab \), and \( -b \) across their respective expressions. 1. \( a^2b(a^3 - a + 1) = a^2b \cdot a^3 - a^2b \cdot a + a^2b \cdot 1 = a^5b - a^3b + a^2b \) 2. \( -ab(a^4 - 2a^2 + 2a) = -ab \cdot a^4 + ab \cdot 2a^2 - ab \cdot 2a = -a^5b + 2a^3b - 2a^2b \) 3. \( -b(a^3 - a^2 - 1) = -b \cdot a^3 + b \cdot a^2 + b = -a^3b + a^2b + b \) ...
Promotional Banner

Topper's Solved these Questions

  • COMPOUND INTEREST

    RD SHARMA|Exercise All Questions|129 Videos

Similar Questions

Explore conceptually related problems

Simplify: a^(2)b^(2)(a+2b)(3a+b)

Simplify: a^(2)b(a-b^(2))+ab^(2)(4ab-2a^(2))-a^(3)b(1-2b)

Simplify: ab(a^(2)-b^(2))+b^(3)(a-2b)

Simplify: (a^(-1) +b^(-1)) div (a^(-2)-b^(-2))

Simplify (a+b)^3+(a-b)^3+6a(a^2-b^2)