Home
Class 8
MATHS
Multiply: (x^6-y^6)b y\ (x^2+y^2) (x...

Multiply: `(x^6-y^6)b y\ (x^2+y^2)` `(x^2+y^2)b y\ (3a+2b)`

Text Solution

AI Generated Solution

To solve the problem of multiplying the expressions \((x^6 - y^6)(x^2 + y^2)\) and \((x^2 + y^2)(3a + 2b)\), we will follow these steps: ### Step 1: Multiply the first expression \((x^6 - y^6)(x^2 + y^2)\) We can use the distributive property (also known as the FOIL method for binomials) to multiply these two expressions. \[ (x^6 - y^6)(x^2 + y^2) = x^6 \cdot x^2 + x^6 \cdot y^2 - y^6 \cdot x^2 - y^6 \cdot y^2 ...
Promotional Banner

Topper's Solved these Questions

  • COMPOUND INTEREST

    RD SHARMA|Exercise All Questions|129 Videos

Similar Questions

Explore conceptually related problems

Multiply (2x^(2)-4x+6y) by 3xy

Multiply: (3x^(2)+y^(2))by(2x^(2)+3y^(2))((3)/(5)x+(1)/(2)y)by((5)/(6)x+4y)

Multiply: x^(2)+4y^(2)+2xy-3x+6y+9 by x-2y+3

The locus of the foot of perpendicular drawn from the centre of the ellipse x^2+""3y^2=""6 on any tangent to it is (1) (x^2-y^2)^2=""6x^2+""2y^2 (2) (x^2-y^2)^2=""6x^2-2y^2 (3) (x^2+y^2)^2=""6x^2+""2y^2 (4) (x^2+y^2)^2=""6x^2-2y^2

The following are the steps involved in factorizing 64 x^(6) -y^(6) . Arrange them in sequential order (A) {(2x)^(3) + y^(3)} {(2x)^(3) - y^(3)} (B) (8x^(3))^(2) - (y^(3))^(2) (C) (8x^(3) + y^(3)) (8x^(3) -y^(3)) (D) (2x + y) (4x^(2) -2xy + y^(2)) (2x - y) (4x^(2) + 2xy + y^(2))

The following steps are involved in expanding (x+ 3y)^(2) . Arrange them in sequential order from the first to the last . (A) (x + 3y)^(2) = x^(2) + 6xy + 9y^(2) (B) (x + 3y)^(2) = (x)^(2) + 2(x)(3y) + (3y)^(2) (C) Using the identify (a + b)^(2) = a^(2) + 2ab + b^(2) , where a = x and b = 3y.

If (x+y)^3- (x-y)^3-6y (x^2-y^2)= k y^3, then k= (a)1 (b) 2 (c) 4 (d) 8

If the origin is shifted to the point ((a b)/(a-b),0) without rotation, then the equation (a-b)(x^2+y^2)-2a b x=0 becomes (A)(a-b)(x^2+y^2)-(a+b)x y+a b x=a^2 (B)(a+b)(x^2+y^2)=2a b (C)(x^2+y^2)=(a^2+b^2) (D)(a-b)^2(x^2+y^2)=a^2b^2

Multiply -(3)/(2)x^(2)y^(2) by (2x-y) and verify the answer for x=1 and y=2