Home
Class 10
MATHS
" Brave that "=sin^(4)theta-cos^(4)theta...

" Brave that "=sin^(4)theta-cos^(4)theta=2sin^(2)theta-1

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that (sin^(4)theta-cos^(4)theta)/(sin^(2)theta-cos^(2)theta)=1

If sin theta+sin^(2)theta+sin^(3)theta=1, then prove that cos^(6)theta-4cos^(4)theta+8cos^(2)theta=4

Prove that sin^(4) theta + cos^(4) theta = 1 - 2 sin^2 theta cos^(2) theta

Prove that (cos^(4)theta-sin^(4)theta)/(cos^(2)theta-sin^(2)theta)=1

Prove that : sin^(4)theta + cos^(4)theta = 1 - 2 cos^(2) theta + 2 cos^(4)theta

Prove that : sin^(4)theta + cos^(4)theta = 1 - 2 cos^(2) theta + 2 cos^(4)theta

Prove the following identities: 2(sin^(6)theta+cos^(6)theta)-3(sin^(4)theta+cos^(4)theta)+1=0sin^(6)theta+cos^(6)theta+3sin^(2)theta cos^(2)theta=1(sin^(8)theta-cos^(8)theta)=(sin^(2)theta-cos^(2)theta)(1-2sin^(2)theta cos^(2)theta)

Prove the following sin^4theta-cos^4theta=sin^2theta-cos^2theta=1-2cos^2theta=2sin^2theta-1

sin^(4)theta+cos^(4)theta=1-2sin^(2)theta cos^(2)theta

Prove that: sin theta cos^(3)theta-cos theta sin^(3)theta=(1)/(4)sin4 theta