Home
Class 12
MATHS
" If "y=(tan^(-1)x)^(2)," then "(d^(2)y)...

" If "y=(tan^(-1)x)^(2)," then "(d^(2)y)/(dx^(2))=

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=(tan^(-1)x)^(2), then (x^(2)+1)^(2)(d^(2)y)/(dx^(2))+2x(x^(2)+1)(dy)/(dx)=

If y = tan^(-1)x , then find (d^(2)y)/(dx^(2)) in term of y alone.

If y= tan^(-1)x , then find (d^(2)y)/(dx^(2)) in terms of y alone.

If y = tan^(-1)x , then find (d^(2)y)/(dx^(2)) in term of y alone.

If y=a^(4x)tan^(-1)(x). FInd (d^(2)y)/(dx^(2))

If y=(tan^(-1)x)^2 , then (x^2+1)^2 (d^2y)/(dx^2) + 2x(x^2+1) dy/dx=

If y=tan^(-1)x^3 then find (d^2y)/(dx^(2)) .

If y=tan^(-1)x^3 then find (d^2y)/(dx^(2)) .

if y=tan^(-1)x, find (d^(2)y)/(dx^(2))

IF y= ( tan ^(-1) x)^(2) " then " (x^(2) +1)^(2) (d^(2)y)/(dx^(2))+2x(x^(2)+1)(dy)/(dx)=