Home
Class 14
MATHS
|[1,1,1],[a,b,1],[a^(3),b^(2),1]|...

|[1,1,1],[a,b,1],[a^(3),b^(2),1]|

Promotional Banner

Similar Questions

Explore conceptually related problems

If A=|(1,1,1),(a,b,c),(a^3,b^3,c^3)|, B=|(1,1,1),(a^2,b^2,c^2),(a^3,b^3,c^3)|, C=|(a,b,c),(a^2,b^2,c^2),(a^3,b^3,c^3)| , then which relation is correct :

If A=|(1,1,1),(a,b,c),(a^3,b^3,c^3)|, B=|(1,1,1),(a^2,b^2,c^2),(a^3,b^3,c^3)|, C=|(a,b,c),(a^2,b^2,c^2),(a^3,b^3,c^3)| , then which relation is correct :

If A=[[1,2,3],[-1,0,2],[1,-3,1]], B=[[4,5,6],[-1,0,1],[2,1,2]], C=[[-1,-2,1],[-1,2,3],[-1,-2,2]] find A-2B+3C. Also verify that (A+B)+C=A+(B+C).

Verify that (AB)' = B 'A ' in A=[[1,2,1],[3,2,1]] and B=[[3,1],[1,1],[2,1]]

Consider the matrix A=[[2,1,3],[2,3,1],[1,1,1]] B=[[-1,2,3],[-2,3,1],[-1,1,1]] Find (A+B)(A-B)

If A=[[1,1],[-1,-1]], B=[[-1,3],[-3,1]] then show that (A+B)^2 !=A^2 + 2AB + B^2 .

Verify that (AB)^-1=B^-1A^-1 if A=[[2,3,],[1,-1,]],B=[[0,1,],[3,1,]]

A={:[(1,2,1),(3,1,4)]:},B={:[(1,-1),(2,3),(-1,1)]:} , verify (AB)'=B'A'

A={:[(1,2,1),(3,1,4)]:},B={:[(1,-1),(2,3),(-1,1)]:} , verify (AB)'=B'A'

If A=[[1, 2, 3], [-1, 1, 2], [1, 2, 4]], B=[[1], [2], [3]] and AX=B , then X=