Home
Class 11
MATHS
[" If "a,b,c" are in "H" .P.then the val...

[" If "a,b,c" are in "H" .P.then the value of "],[qquad ((ac+ab-bc)(ab+bc-ac))/((abc)^(2))]

Promotional Banner

Similar Questions

Explore conceptually related problems

If a,b and c are in H.P.,then the value of ((ac+ab-bc)(ab+bc-ac))/((abc)^(2)) is

If a, b and c are in H.P., then the value of ((ac + ab - bc)(ab + bc - ac))/((abc)^(2)) is -

If a, b and c are in H.P., then the value of ((ac+ab-bc)(ab+bc-ac))/(abc)^2 is

If a, b and c are in H.P., then the value of ((ac+ab-bc)(ab+bc-ac))/(abc)^2 is

If a,b, and c are in H.P.then th value of ((ac+ab-bc)(ab+bc-ac))/((abc)^(2)) is ((a+c)(3a-c))/(4a^(2)c^(2)) b.(2)/(bc)-(1)/(b^(2)) c.(2)/(bc)-(1)/(a^(2)) d.((a-c)(3a+c))/(4a^(2)c^(2))

What is the value of |(-a^(2),ab,ac),(ab,-b^(2),bc),(ac,bc,-c^(2))| ?

If bc + ab + ca = abc, then the value of (b+c)/(bc(1-a))+(a+c)/(ac(1-b))+(a+b)/(ab(1-c)) is

If a,b,c be the sum of n term of three A.P\'s whose first terms are unity and common differences are in H.P., then n= (A) (2ac+ab+bc)/(a+c-ab) (B) (2ac-ab-bc)/(a+c-ab) (C) (2ac-ab-bc)/(a+c-ab) (D) (2ac-ab+bc)/(a+c-ab)

If the product abc =1, then the value of the determinant |{:( -a ^(2), ab, ac),( ba, -b ^(2), bc),(ac, bc,-c ^(2)):}| is