Home
Class 14
MATHS
((10008.99)^(2))/(10009.001)xxsqrt(3589)...

`((10008.99)^(2))/(10009.001)xxsqrt(3589)xx0.4987=?`

A

3000

B

300000

C

3000000

D

500

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(\frac{(10008.99)^2}{10009.001} \times \sqrt{3589} \times 0.4987\) approximately, we will follow these steps: ### Step 1: Round off the numbers - Round \(10008.99\) to \(10009\). - Round \(10009.001\) to \(10009\). - Round \(3589\) to \(3600\) (since \(3600\) is a perfect square). - Round \(0.4987\) to \(0.50\). ### Step 2: Substitute the rounded values into the equation Now we can rewrite the equation using the rounded values: \[ \frac{(10009)^2}{10009} \times \sqrt{3600} \times 0.50 \] ### Step 3: Simplify the equation - The \(10009\) in the numerator and denominator cancels out: \[ 10009 \times \sqrt{3600} \times 0.50 \] ### Step 4: Calculate \(\sqrt{3600}\) - \(\sqrt{3600} = 60\). ### Step 5: Substitute back into the equation Now we have: \[ 10009 \times 60 \times 0.50 \] ### Step 6: Calculate \(60 \times 0.50\) - \(60 \times 0.50 = 30\). ### Step 7: Final multiplication Now we multiply: \[ 10009 \times 30 \] ### Step 8: Calculate \(10009 \times 30\) - \(10009 \times 30 = 300270\). ### Conclusion The approximate value of the expression is \(300270\). ### Step 9: Compare with options Since we are looking for the closest approximation, we can round \(300270\) to \(300000\) or \(3 \text{ lakh}\). ### Final Answer Thus, the required answer is approximately \(3 \text{ lakh}\). ---

To solve the equation \(\frac{(10008.99)^2}{10009.001} \times \sqrt{3589} \times 0.4987\) approximately, we will follow these steps: ### Step 1: Round off the numbers - Round \(10008.99\) to \(10009\). - Round \(10009.001\) to \(10009\). - Round \(3589\) to \(3600\) (since \(3600\) is a perfect square). - Round \(0.4987\) to \(0.50\). ...
Promotional Banner

Topper's Solved these Questions

  • AREA AND PERIMETER

    IBPS & SBI PREVIOUS YEAR PAPER|Exercise MCQ|75 Videos

Similar Questions

Explore conceptually related problems

The value of sqrt(((0.1)^2+(0.01)^2+(0.009)^2)/((0.01)^2+(0.001)^2+(0.0009)^2)) is

Which of the following is equal to 1?((0.11)^(2))/((1.1)^(2)xx0.1) (b) ((1.1)^(2))/(11^(2)xx(0.01)^(2)) (c) ((0.011)^(2))/((1.1)^(2)xx(0.01)^(2)) (d) ((0.11)^(2))/(11^(2)xx0.01)

(1//2)xx(1//17.01)xx289xx?=4.001xx2.01

What is the value of (1.001 xx 1.001 xx 1.001 +0.999 xx 0.999 xx 0.999)/(1.001 xx 1.001-1.001 xx 0.999 +0.999 xx 0.999) ?

Find the value of ((0.01)^(2)+(0.22)^(2)+(0.333)^(2))/((0.001)^(2)+(0.022)^(2)+(0.0333)^(2))