Home
Class 14
MATHS
sqrt(5687)xxsqrt(1245)divsqrt(689)=?div1...

`sqrt(5687)xxsqrt(1245)divsqrt(689)=?div13`

A

840

B

910

C

1320

D

1120

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sqrt{5687} \times \sqrt{1245} \div \sqrt{689} = ? \div 13 \), we will follow these steps: ### Step 1: Simplify the left-hand side of the equation We can combine the square roots in the left-hand side: \[ \sqrt{5687} \times \sqrt{1245} \div \sqrt{689} = \frac{\sqrt{5687 \times 1245}}{\sqrt{689}} \] ### Step 2: Calculate \( \sqrt{5687} \) To approximate \( \sqrt{5687} \): - The nearest perfect square to 5687 is 5625, which is \( 75^2 \). - Therefore, \( \sqrt{5687} \approx 75 \). ### Step 3: Calculate \( \sqrt{1245} \) To approximate \( \sqrt{1245} \): - The nearest perfect square to 1245 is 1225, which is \( 35^2 \). - Therefore, \( \sqrt{1245} \approx 35 \). ### Step 4: Calculate \( \sqrt{689} \) To approximate \( \sqrt{689} \): - The nearest perfect square to 689 is 676, which is \( 26^2 \). - Therefore, \( \sqrt{689} \approx 26 \). ### Step 5: Substitute the approximations into the equation Now we substitute the approximated values into the equation: \[ \frac{\sqrt{5687 \times 1245}}{\sqrt{689}} \approx \frac{75 \times 35}{26} \] ### Step 6: Calculate the product Now we calculate the product: \[ 75 \times 35 = 2625 \] ### Step 7: Divide by \( \sqrt{689} \) Now we divide by \( 26 \): \[ \frac{2625}{26} \approx 101.25 \] ### Step 8: Set up the equation with the right-hand side Now we set up the equation: \[ 101.25 = \frac{x}{13} \] ### Step 9: Solve for \( x \) To find \( x \), we multiply both sides by \( 13 \): \[ x = 101.25 \times 13 \approx 1316.25 \] ### Step 10: Round to the nearest whole number Since we are looking for an approximate answer, we round \( 1316.25 \) to \( 1320 \). ### Final Answer Thus, the final answer is approximately \( 1320 \). ---

To solve the equation \( \sqrt{5687} \times \sqrt{1245} \div \sqrt{689} = ? \div 13 \), we will follow these steps: ### Step 1: Simplify the left-hand side of the equation We can combine the square roots in the left-hand side: \[ \sqrt{5687} \times \sqrt{1245} \div \sqrt{689} = \frac{\sqrt{5687 \times 1245}}{\sqrt{689}} \] ...
Promotional Banner

Topper's Solved these Questions

  • AREA AND PERIMETER

    IBPS & SBI PREVIOUS YEAR PAPER|Exercise MCQ|75 Videos

Similar Questions

Explore conceptually related problems

sqrt(512)xxsqrt(1250)

(sqrt(2498)xxsqrt(625))/(sqrt(99))=?

(sqrt(4356)xxsqrt(?))/(sqrt(6084))=11

3sqrt(512)div 4sqrt(16)div sqrt(576)=?

sqrt(26)xxsqrt(6.24)xxsqrt(102)=?

sqrt(5)xxsqrt(125) =_______

What approximate value will come in place of the question mark (?) in the following questions ? sqrt(6889)xxsqrt(4444)-:sqrt(260)=?

3sqrt(13824)xxsqrt(?)=864