Home
Class 14
MATHS
94.95xx13.03+sqrt(35.98)xx14.99=53xxsqrt...

`94.95xx13.03+sqrt(35.98)xx14.99=53xxsqrt(?)`

A

25

B

144

C

225

D

625

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 94.95 \times 13.03 + \sqrt{35.98} \times 14.99 = 53 \times \sqrt{?} \), we will follow these steps: ### Step 1: Calculate \( 94.95 \times 13.03 \) First, we multiply \( 94.95 \) by \( 13.03 \): \[ 94.95 \times 13.03 = 1235.8485 \] ### Step 2: Calculate \( \sqrt{35.98} \) Next, we need to find the square root of \( 35.98 \): \[ \sqrt{35.98} \approx 5.99 \] ### Step 3: Calculate \( \sqrt{35.98} \times 14.99 \) Now, we multiply the result of the square root by \( 14.99 \): \[ 5.99 \times 14.99 \approx 89.85 \] ### Step 4: Add the results from Step 1 and Step 3 Now we add the two results together: \[ 1235.8485 + 89.85 \approx 1325.6985 \] ### Step 5: Set up the equation Now we set up the equation based on the original question: \[ 1325.6985 = 53 \times \sqrt{?} \] ### Step 6: Solve for \( \sqrt{?} \) To find \( \sqrt{?} \), we divide both sides by \( 53 \): \[ \sqrt{?} = \frac{1325.6985}{53} \approx 25 \] ### Step 7: Square both sides to find \( ? \) Now we square both sides to find \( ? \): \[ ? = 25^2 = 625 \] ### Final Answer Thus, the value of \( ? \) is \( 625 \). ---

To solve the equation \( 94.95 \times 13.03 + \sqrt{35.98} \times 14.99 = 53 \times \sqrt{?} \), we will follow these steps: ### Step 1: Calculate \( 94.95 \times 13.03 \) First, we multiply \( 94.95 \) by \( 13.03 \): \[ 94.95 \times 13.03 = 1235.8485 ...
Promotional Banner

Topper's Solved these Questions

  • AREA AND PERIMETER

    IBPS & SBI PREVIOUS YEAR PAPER|Exercise MCQ|75 Videos

Similar Questions

Explore conceptually related problems

sqrt(7321)xx35.999=?

sqrt(2025.11)xxsqrt(256.04)+sqrt(399.95)xxsqrt(?) =33.98xx40.11

(sqrt(2498)xxsqrt(625))/(sqrt(99))=?

561div35.05xx19.99=?

((10008.99)^(2))/(10009.001)xxsqrt(3589)xx0.4987=?

If sqrt(0.03 xx 0.3a ) = 0.3 xx 0.3 xx sqrt(b) value of (a)/(b) is

999((57)/(99))xx99=

sqrt(5687)xxsqrt(1245)divsqrt(689)=?div13

133.99sqrt(?)+42.0032sqrt(?)=(176)/(12.998)xx(?)