Home
Class 11
MATHS
In DeltaABC ,(b^2+c^2)/(b^2-c^2)=sin(B+C...

In `DeltaABC` ,`(b^2+c^2)/(b^2-c^2)=sin(B+C)/sin(B-C)` then the triangle is

Promotional Banner

Similar Questions

Explore conceptually related problems

In a Delta ABC if a^(2)sin(B-C)+b^(2)sin(C-A)+c^(2)sin(A-B)=0, then triangle is

In DeltaABC show that (b^(2)-c^(2))/(a^(2))=(sin(B-C))/(sin(B+C))

In DeltaABC, (b^(2)+c^(2))sin(B-C)=(b^(2)-c^(2))sin(B+C) , then prove that the triangle in either isosceles or right angled.

lf in DeltaABC,b^(2)sin 2C + c^(2) sin 2B = 2bc,then the triangle is

lf in DeltaABC,b^(2)sin 2C + c^(2) sin 2B = 2bc,then the triangle is

In DeltaABC,(b^2-c^2)/a^2sin^2A+(c^2+a^2)/b^2 sin^2B=

In DeltaABC, " if " cos A=( sin B)/( 2 sin C) , then the triangle is

In a DeltaABC" show that "(b^(2)-c^(2))/(a^(2))=(sin(B-C))/(sin(B+C))

In Delta ABC, if a/c=(sin(A-B))/(sin (B-C)) , then a^2,b^2,c^2 are in

In any DeltaABC , prove that : (b^2 - c^2)/a^2 = (sin (B-C))/(sin(B+C))