Home
Class 12
MATHS
y=log(x+sqrt(1+x^(2)))...

y=log(x+sqrt(1+x^(2)))

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=log(x+sqrt(x^(2)-1)), then (dy)/(dx)=

The value of int_(-1)^(1) (log(x+sqrt(1+x^(2))))/(x+log(x+sqrt(1+x^(2))))f(x) dx-int_(-1)^(1) (log(x +sqrt(1+x^(2))))/(x+log(x+sqrt(1+x^(2))))f(-x)dx ,

If y=log (x + sqrt(x^(2) + 1)) then show that, (x^(2) + 1) (d^(2)y)/(dx^(2)) + x (dy)/(dx)= 0

y=[log(x+sqrt(x^(2)+1))]^(2) then prove that (x^(2)+1)y_(2)+xy_(1)=2

If y={log(x+sqrt(x^(2)+1))}^(2), show that (1+x^(2))(d^(2)y)/(dx^(2))+x(dy)/(dx)=2

If y={log(x+sqrt(x^(2)+1))}^(2), show that (1+x^(2))(d^(2)y)/(dx^(2))+x(dy)/(dx)=2

sqrt(1-y^(2))dx-sqrt(1-x^(2))dy=0 A) sin^(-1)x-cos^(-1)y=c B) sin^(-1)x-sin^(-1)y=c C) log(x+sqrt(1-x^(2)))=log(y+sqrt(1-y^(2)))+c D) x-y=c(1+xy)

Differentiate y=log(x+sqrt(x^2+1))

If y = log (x + sqrt(x ^(2) + 1)) then y _(2)(1) =