Home
Class 9
MATHS
[" 11) Prove that "],[int sqrt(x^(2)-a^(...

[" 11) Prove that "],[int sqrt(x^(2)-a^(r))dx=(1)/(2)x sqrt(x^(2)-a^(2))-(a^(2))/(2)log(x+sqrt(x^(2)-a^(2)))+c]

Promotional Banner

Similar Questions

Explore conceptually related problems

int sqrt(x^(2)-a^(2))=(1)/(2)x sqrt(x^(2)-a^(2))-(1)/(2)a^(2)log(x+sqrt(x^(2)-a^(2))+c

(d)/(dx)((x)/(2)sqrt(x^(2)+a^(2))+(a^(2))/(2)log(x+sqrt(x^(2)+a^(2)))) is

int sqrt(a^(2)+x^(2))=(1)/(2)x sqrt(a^(2)+x^(2))+(1)/(2)a^(2)log(x+sqrt(a^(2)+x^(2))+c

intsqrt(x^2-a^2)dx=(x)/(2)sqrt(x^2-a^2)-(a^2)/(2) log |x+sqrt(x^2-a^2)|+c

int(1)/(sqrt(x^(2)-a^(2)))=log(x+sqrt(x^(2)-a^(2)))

int(1)/(sqrt(x^(2)-a^(2)))=log(x+sqrt(x^(2)-a^(2))+c

int log(x+sqrt(x^(2)+a^(2)))dx

int sqrt(x)(log x)^(2)dx

int sqrt(a^(2)-x^(2))dx=(1)/(2)x sqrt(a^(2)-x^(2))+(1)/(2)a^(2)sin^(-1)((x)/(a))+c

int log (x+sqrt(x^(2)+a^(2)))dx =