Home
Class 13
MATHS
" If "i-sqrt(-1)," then "4+5[-(1)/(2)+(i...

" If "i-sqrt(-1)," then "4+5[-(1)/(2)+(i sqrt(3))/(2)]^(34)+3[-(1)/(2)+(i sqrt(3))/(2)]^(365)" equals "

Promotional Banner

Similar Questions

Explore conceptually related problems

4+5(-(1)/(2)+(i sqrt(3))/(2))^(334)+3(-(1)/(2)+(i sqrt(3))/(2))^(365)=

If i=sqrt(-)1, then 4+5(-(1)/(2)+(i sqrt(3))/(2))^(334)+3(-(1)/(2)+(i sqrt(3))/(2))^(365) is equal to (1)1-i sqrt(3)(2)-1+i sqrt(3)(3)i sqrt(3)(4)-i sqrt(3)

If i=sqrt(-1), then 4+5(-(1)/(2)+i(sqrt(3))/(2))^(334)+3(-(1)/(2)+i(sqrt(3))/(2))^(335) is equal to-

If i=sqrt(-1) , then 4+5(-1/2+(isqrt(3))/(2))^(334)+3(-1/2+(isqrt(3))/(2))^(365) is equal to

If i = sqrt(-1) , then 4 + 3 (-(1)/(2) + i(sqrt(3))/(2))^(127)+5(-(1)/(2)+i(sqrt(3))/(2))^(124) is equal to

Prove that 4+5(-(1)/(2)+(i sqrt(3))/(2))^(334)+3(-(1)/(2)+(i sqrt(3))/(2))^(335)=i sqrt(3)

((-1+i sqrt(3))/(2))^(3 n)+((-1-i sqrt(3))/(2))^(3 n)=

Find the value of 4+5[-(1)/(2)-i(sqrt(3))/(2)]^(344)+3[-(1)/(2)+i(sqrt(3))/(2)]^(365) (i=sqrt(-1))