Home
Class 10
MATHS
([x+lambda,x,x],[x,x+lambda,x],[x,x,x+la...

([x+lambda,x,x],[x,x+lambda,x],[x,x,x+lambda])[" NCICRT "]

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=|[x+lambda,x,x] , [x,x+lambda,x] , [x,x,x+lambda]| then f(12x)-f(x)=

Let A=[[x+lambda,x,x] , [x,x+lambda,x] ,[x,x,x+lambda]] then A^(-1) exists if (A) x!=0 (B) lambda!=0 (C) 3x+1!=0 , lambda!=0 (D) x!=0 , lambda!=0

Evaluate the following : |{:(x+lambda,x,x),(x,x+lambda,x),(x,x,x+lambda):}|

|[x+lambda, 2x, 2x], [2x, x+lambda, 2x], [2x, 2x, x+lambda]| =(5x+ lambda)(lambda-x)^(2)

If |(x+lambda,x,x),(x,x+lambda,x),(x,x,x+lambda)| = 0, (lambda != 0) then a) x = - lambda//3 b) x = 3 lambda c)x = 0 d)None of these

Let A=[{:(,x+lambda,x,x),(,x,x+lambda,x),(,x,x,x+lambda):}] then prove that A^(-1) exists if 3x+lambda ne0, lambda=ne0

Let A=[{:(,x+lambda,x,x),(,x,x+lambda,x),(,x,x,x+lambda):}] then prove that A^(-1) exists if 3x+lambda ne0, lambda=ne0

The roots of det[[x,a,b,1lambda,x,b,1lambda,mu,x,1lambda,mu,v,1]]=0 are

Given below. Is the distribution of a random variable X {:(X =x,1,2,3,4),("p(X=x)",lambda,2 lambda,3 lambda,4 lambda):} If alpha = P (X lt 3) and beta = P (X gt 2) , "then" alpha : beta=

If f(x)=|(x,lambda),(2lambda,x)| , then f(lambdax)-f(x) is equal to