Home
Class 12
MATHS
(d)/(dx)[a tan^(-1)x+b log((x-1)/(x+1))]...

(d)/(dx)[a tan^(-1)x+b log((x-1)/(x+1))]=(1)/(x^(4)-1)rArr a-2b=

Promotional Banner

Similar Questions

Explore conceptually related problems

(d)/(dx ) [a Tan ^(-1) x + b log ((x-1)/(x +1)) ] = (1)/(x ^(4) - 1) implies a- 2b =

(d)/(dx) {Tan ^(-1) ((x-a)/(1 + ax ))}=

d/dx(tan^(-1)x) is :

(d)/(dx)[tan^-1((sqrt(1+x^(2))-1)/(x))]=

(d)/(dx) [tan^(-1) ((a-x)/(1+ ax))] is

(d)/(dx) {Tan ^(-1) ((b tan x )/(a ))}=

(d)/(dx) {Tan ^(-1) ((1+x)/(1- x))}=

int_(-1)^(1)(d)/(dx)[tan^(-1)((1)/(x))]dx=

(d)/(dx)tan^(-1)((x)/(1-sqrt(1+x^(2))))]=

(d)/(dx) {Tan ^(-1) ""(2x)/(1- x ^(2))}=