Home
Class 12
MATHS
int(0)^(1)([n],[pi(x+r)],[r=1])(sum(k=1)...

int_(0)^(1)([n],[pi(x+r)],[r=1])(sum_(k=1)^(n)(1)/((x+k)))dx=

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int_(0)^(1)(pi_(r=1)^(n)(x+r))(sum_(k=1)^(n)(1)/(x+k))dx

The value of int_0^1 ( pi_(r=1)^n (x+r)) (sum_(k=1)^n 1/(x+k)) dx

The value of int_(0)^(1)lim_(n rarr oo)sum_(k=0)^(n)(x^(k+2)2^(k))/(k!)dx is:

If sum_(r=1)^(n)t_(r)=sum_(k=1)^(n)sum_(j=1)^(k)sum_(i=1)^(j)2, then sum_(r=1)^(n)(1)/(t_(r))=

Let f(n)=(sum_(r=1)^(n)((1)/(r)))/(sum_(k=1)^(n)(k)/(2n-2k+1)(2n-k+1))

Q.if int_(0)^(100)(f(x)dx=a, then sum_(r=1)^(100)(int_(0)^(1)(f(r-1+x)dx))=

If lim_(n rarr oo)(sum_(r=1)^(n)sqrt(r)sum_(r=1)^(n)(1)/(sqrt(r)))/(sum_(r=1)^(n)r)=(k)/(3) then the value of k is

If sum_(r=1)^(n) t_(r ) = sum_(k=1)^(n) sum_(j=1)^(k) sum_(i=1)^(j) 2 , then sum_(r=1)^(n) (1)/( t_(r )) equals :

If m gt 0, n gt 0 , the definite integral l=int_(0)^(1)x^(m-1)(1-x)^(n-1)dx depends upon the vlaues of m and n and is denoted by beta(m,n) , called the beta function. E.g. int_(0)^(1)x^(4)(1-x)^(5)dx=int_(0)^(1)x^(5-1)(1-x)^(6-1)dx=beta(5, 6) and int_(0)^(1)x^(5//2)(1-x)^(-1//2)dx=int_(0)^(1)x^(7//2-1)(1-x)^(1//2-1)dx=beta((7)/(2),(1)/(2)) . Obviously, beta(n, m)=beta(m, n) . If int_(0)^(n)(1-(x)/(n))^(n)x^(k-1)dx=R beta(k, n+1) , then R is equal to