Home
Class 11
MATHS
Solve for: x :(2x)^((log)b2)=(3x)^((log)...

Solve for: `x :(2x)^((log)_b2)=(3x)^((log)_b3)` .

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve for: x:(2x)^(log_(b)2)=(3x)^(log_(b)3)

Solve for x: (2x)^(log_(b) 2) = (3x)^(log_(b)3) .

Solve for x: (2x)^(log_(b) 2) = (3x)^(log_(b)3) .

Solve for x:(lg)_(4)(log)_(3)(log)_(2)x=0

Solve for x :(log)_4(log)_3(log)_2x=0

Solve for x backslash2(log)_(3)(x-2)+(log)_(3)(x-4)^(2)=0

Solve for x : 3^(log x)-2^(log x) =2^(log x+1)-3^(log x-1)

If b gt 1, x gt 0 and (2x)^(log_(b) 2)-(3x)^(log_(b) 3)=0 , then x is

If b gt 1, x gt 0 and (2x)^(log_(b) 2)-(3x)^(log_(b) 3)=0 , then x is