Home
Class 14
MATHS
" If "abc=1" हो,तो "{(1)/(1+a+b^(-1))+(1...

" If "abc=1" हो,तो "{(1)/(1+a+b^(-1))+(1)/(1+b+c^(-1))+(1)/(1+c+a^(-1))}=?

Promotional Banner

Similar Questions

Explore conceptually related problems

If abc=1, show that (1)/(1+a+b^(-1))+(1)/(1+b+c^(-1))+(1)/(1+c+a^(-1))=1

If abc=1, then ((1)/(1+a+b^(-1))+(1)/(1+b+c^(-1))+(1)/(1+c+a^(-1)))=? a.0 b.ab c.1 d.(1)/(ab)

If abc=1, show that (1)/(1+a+b^(-1))+(1)/(1+b+c)+(1)/(1+c+a^(-1))=1

If a b c=1,\ show that 1/(1+a+b^(-1))+1/(1+b+c^(-1))+1/(1+c+a^(-1))=1

If a b c=1, show that 1/(1+a+b^(-1))+1/(1+b+c^(-1))+1/(1+c+a^(-1))=1

if abc =2 then the value of (1)/(1+a+2b^(-1))+(1)/(1+(b)/(2)+c^(-1))+(1)/(1+a^(-1)+c)=

( Prove that: )/(a^(-1)b^(-1)+b^(-1)c^(-1)+c^(-1)a^(-1))=abc

Prove that (a+b+c)/(a^(-1)b^(-1)+b^(-1)c^(-1)+c^(-1)a^(-1))=abc

If a ((1)/(b) + (1)/(c)) , b((1)/(c) + (1)/(a)) , c ((1)/(a)+ (1)/(b)) are in AP then a, b, c are in :