Home
Class 12
MATHS
If A=[1 1 0 1] , prove that A^n=[1n0 1] ...

If `A=[1 1 0 1]` , prove that `A^n=[1n0 1]` for all positive integers `ndot`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A=[1101], prove that A^(n)=[1n01] for all positive integers n.

If [[1,1],[0,1]] , prove that A^n=[[1,n],[0,1]] for all positive integers ndot

If A=[[1,1],[0,1]] , prove that A^n=[[1,n],[0,1]] for all n epsilon N

If a is a non-zero real or complex number. Use the principle of mathematical induction to prove that: If A=[a1 0a] , then A^n=[a^nn a^(n-1)0a^n] for every positive integer ndot

Given that u_(n+1)=3u_n-2u_(n-1), and u_0=2 ,u_(1)=3 , then prove that u_n=2^(n)+1 for all positive integer of n

Given that u_(n+1)=3u_n-2u_(n-1), and u_0=2 ,u_(1)=3 , then prove that u_n=2^(n)+1 for all positive integer of n

Given that u_(n+1)=3u_n-2u_(n-1), and u_0=2 ,u_(1)=3 , then prove that u_n=2^(n)+1 for all positive integer of n

Given that u_(n+1)=3u_n-2u_(n-1), and u_0=2 ,u_(1)=3 , then prove that u_n=2^(n)+1 for all positive integer of n

Given that u_(n+1)=3u_n-2u_(n-1), and u_0=2 ,u_(1)=3 , then prove that u_n=2^(n)+1 for all positive integer of n

If A=[{:(1,1),(0,1):}] , prove that A=[{:(1,n),(0,1):}] for all n inN.