Home
Class 11
MATHS
If ak=1/(k(k+1)), for k=1,2,3,...n, then...

If `a_k=1/(k(k+1))`, for `k=1,2,3,...n,` then `(sum_(k=1)^n a_k)^2=`

Promotional Banner

Similar Questions

Explore conceptually related problems

a_(k)=(1)/(k(k+1)) for k=1,2,3,4,...n then (sum_(k=1)^(n)a_(k))^(2)=

If a_k=1/(k(k+1)) for k=1 ,2……..,n then prove that (sum_(k=1)^n a_k)^2 =n^2/(n+1)^2

Evaluate : sum_(k=1)^n (2^k+3^(k-1))

Evaluate : sum_(k=1)^n (2^k+3^(k-1))

If Delta_(k) = |(k,1,5),(k^(2),2n +1,2n +1),(k^(3),3n^(2),3n +1)|, " then " sum_(k=1)^(n) Delta_(k) is equal to

If Delta_(k) = |(k,1,5),(k^(2),2n +1,2n +1),(k^(3),3n^(2),3n +1)|, " then " sum_(k=1)^(n) Delta_(k) is equal to

If sum_(k=1)^(n)k=210, find the value of sum_(k=1)^(n)k^(2).

If sum_(k=1)^(n)k=45, find the value of sum_(k=1)^(n)k^(3).

If a_1,a_2,a_3...a_n are in HP and f(k)=sum_(r=1)^na_r-a_k, then a_1/(f(1)),a_2/(f(2)),a_3/(f(3)),......a_n/(f(n)) are in