Home
Class 10
MATHS
If p=(a)/(a-b) and aneb, then, in terms ...

If `p=(a)/(a-b) and aneb`, then, in terms of a and b, `1-p=`

A

`(a)/(b-a)`

B

`(b)/(b-a)`

C

`(a)/(a-b)`

D

`(b)/(a-b)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the expression for \( 1 - p \) given that \( p = \frac{a}{a - b} \). ### Step-by-Step Solution: 1. **Write down the expression for \( p \)**: \[ p = \frac{a}{a - b} \] 2. **Substitute \( p \) into the expression \( 1 - p \)**: \[ 1 - p = 1 - \frac{a}{a - b} \] 3. **Convert 1 into a fraction with the same denominator**: \[ 1 = \frac{(a - b)}{(a - b)} \] So we can rewrite \( 1 - p \) as: \[ 1 - p = \frac{(a - b)}{(a - b)} - \frac{a}{(a - b)} \] 4. **Combine the fractions**: \[ 1 - p = \frac{(a - b) - a}{(a - b)} \] 5. **Simplify the numerator**: \[ (a - b) - a = -b \] Therefore, we have: \[ 1 - p = \frac{-b}{(a - b)} \] 6. **Multiply numerator and denominator by -1 to make the expression neater**: \[ 1 - p = \frac{b}{(b - a)} \] ### Final Expression: Thus, the expression for \( 1 - p \) in terms of \( a \) and \( b \) is: \[ 1 - p = \frac{b}{b - a} \]
Promotional Banner

Topper's Solved these Questions

  • HEART OF ALGEBRA

    ENGLISH SAT|Exercise Grib-In|62 Videos