Home
Class 12
MATHS
[n+y=a+b],[an-by=a^(2)-b^(2)]...

[n+y=a+b],[an-by=a^(2)-b^(2)]

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve for x and y. (a-b)x+(a+b)y=a^(2)-2ab-b^(2) , (a+b)(x+y)=a^(2)+b^(2)

Solve: (a - b )x + (a + b)y = a^(2) - 2ab - b^(2) and (a + b) (x + y) = a^(2) + b^(2)

(a-b)x+(a+b)y=a^(2)-2ab-b^(2)(a+b)(x+y)=a^(2)+b^(2) find x and y

Solve : a(x+y)+b(x-y)=a^2-a b+b^2 , a(x+y)-b(x-y)=a^2+a b-b^2

If x+y=a+b and x^(2)+y^(2)=a^(2)+b^(2) , then by mathematical induction prove that x^(n)+y^(n)=a^(n)+b^(n) . For all n in NN .

Evaluate : b^(2)y - 9b^(2)y + 2b^(2)y - 5b^(2)y

Solve: (a-b)x+(a+b)y=a^2-2ab-b^2 and (a+b)(x+y)=a^2+b^2

If x= a sec^(n) theta , y = b tan^(n) theta then (x/a)^(2//n) -(y/b)^(2//n)=