Home
Class 11
MATHS
If 2cosbeta=co(2alpha+beta) then 3tan(al...

If `2cosbeta=co(2alpha+beta)` then `3tan(alpha-beta)+cosalpha` is independent of

Promotional Banner

Similar Questions

Explore conceptually related problems

If 2cos beta=cos(2 alpha+beta) then 3tan(alpha+beta)+cot alpha is independent of -

If 3sinbeta=sin(2alpha+beta) then tan(alpha+beta)-2tanalpha is (a)independent of alpha (b)independent of beta (c)dependent of both alpha and beta (d)independent of both alpha and beta

If 3sinbeta=sin(2alpha+beta) then tan(alpha+beta)-2tanalpha is (a)independent of alpha (b)independent of beta (c)dependent of both alpha and beta (d)independent of both alpha and beta

If 3sinbeta=sin(2alpha+beta) then tan(alpha+beta)-2tanalpha is (a)independent of alpha (b)independent of beta (c)dependent of both alpha and beta (d)independent of both alpha and beta

If 3sin beta=sin(2 alpha+beta) then tan(alpha+beta)-2tan alpha is (a)independent of alpha (bindependent of beta (c)dependent of both alpha and beta( d)independent of both alpha and beta

The expression (tan alpha+tan beta)cot(alpha+beta)+(tan alpha-tan beta)cot(alpha-beta) is independent of both alpha and beta.

Prove that cos^(2)(alpha-beta)+cos^(2)beta-2cos(alpha-beta)cosalphacosbeta is independent of beta .

The expression cos^(2)(alpha+beta)+cos^(2)(alpha-beta)-cos2 alpha*cos2 beta is (a)independent of alpha(b) independent of beta (c)independent of alpha and beta(d) dependent on alphaand beta

If sin alpha + sin beta=a and cos alpha+cosbeta=b then tan((alpha-beta)/2) is equal to