Home
Class 11
MATHS
If alphaa n dbeta are the roots of ax^2...

If `alphaa n dbeta` are the roots of `ax^2+bx+c=0a n dS_n=alpha^n+beta^n,` then `a S_(n+1)+b S_n+c S_(n-1)=0` and hence find `S_5dot`

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha and beta are the roots of ax^(2)+bx+c=0andS_(n)=alpha^(n)+beta^(n), then aS_(n+1)+bS_(n)+cS_(n-1)=0 and hence find S_(5)

If alpha,beta are the roots of the equation ax^2+bx+c=0 and S_n=alpha^n+beta^n , show that aS_(n+1)+bS_n+cS_(n-1)=0 and hence find S_5

If alpha,beta are the roots of the equation ax^(2)+bx+c=0 and S_(n)=alpha^(n)+beta^(n), then a S_(n+1)+cS_(n)-1)=

If alpha, beta are the roots of a x^(2)+b x+c=0 and A_(n)=alpha^(n)+beta^(n) , then, a A_(n+2)+b A_(n+1)+c A_(n)=

If alpha , beta are the roots of the equation ax^(2)+bx+c=0 and S_(n)=alpha^(n)+beta^(n) , then aS_(n+1)+bS_(n)+cS_(n-1)=(n ge 2)

If alpha , beta are the roots of the equation ax^(2)+bx+c=0 and S_(n)=alpha^(n)+beta^(n) , then aS_(n+1)+bS_(n)+cS_(n-1)=(n ge 2)

If alpha , beta are the roots of the equation ax^(2)+bx+c=0 and S_(n)=alpha^(n)+beta^(n) , then aS_(n+1)+bS_(n)+cS_(n-1)=(n ge 2)

If alpha , beta are the roots of the equation ax^(2)+bx+c=0 and S_(n)=alpha^(n)+beta^(n) , then aS_(n+1)+bS_(n)+cS_(n-1)=(n ge 2)